ON THE ASYMPTOTICS OF EIGENVALUES OF SEMIDIAGONAL TOEPLITZ MATRICES

Cover Page

Cite item

Full Text

Abstract

Asymptotic formulas are constructed that allow a uniform estimate of the remainder term for Toeplitz matrices of size 𝑛 for 𝑛 → ∞ in the case when their symbol 𝑎(𝑡) has the form 𝑎(𝑡) = (𝑡 − 2𝑎0 + 𝑡-1)3. This result is a generalization of the result of Stukopin et al. (2021), in which similar asymptotic formulas were obtained for a diagonal Toeplitz matrix with a symbol of a similar form when 𝑎0 = 1. The obtained formulas have high computational efficiency and generalize the results of the classical works of Parterre and Widom on the asymptotics of extreme eigenvalues.

About the authors

I. V. Voronin

Moscow Institute of Physics and Technology (National Research University)

Email: Voronin.I@phystech.edu
Dolgoprudnyi, Moscow oblast, 141700 Russia

References

  1. Stukopin V., Grudsky S., Voronin I., Barrera M. Asymptotics of the eigenvalues of seven-diagonal Toeplitz matrices of a special form // arXive. 2021. Nov. 2111.07196.
  2. Savage L. J., Grenander U., Szego G. Toeplitz forms and their Applications // J. Am. Statistic. Associat. 1958. V. 53. N 283. P. 763.
  3. Schmidt P., Spitzer F. The Toeplitz matrices of an arbitrary Laurent polynomial // Math. Scandinavica. 1960. V. 8. P. 15.
  4. Widom H. Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index // Oper. Theory Adv. Appl. 1990. V. 48.
  5. Bottcher A., Grudsky S. M. Spectral properties of banded Toeplitz matrices // Soc. Industrial and Appl. Math. 2005.
  6. Bottcher A., Silbermann B. Introduction to large truncated Toeplitz matrices. Springer New York, 1999.
  7. Deift P., It’s A., Krasovsky I. Toeplitz Matrices and Toeplitz determinants under the impetus of the ising model: some history and some recent results // Comm. on Pure and Appl. Math. 2013. V. 66, N 9. P. 1360–1438.
  8. Deift P., It’s A., Krasovsky I. Eigenvalues of Toeplitz matrices in the bulk of the spectrum // Bull. Inst. Math. Acad. Sin. 2012. V. 7. P. 437–461.
  9. Kadano L. P. Spin-spin correlations in the two-dimensional ising model // Il Nuovo Cimento B Ser. 10. 1966. V. 44. N 2. P. 276–305.
  10. McCoy B., Wu T. The Two-Dimensional Ising Model, 1973.
  11. Batalshchikov A. A., Grudsky S. M., Stukopin V. A. Asymptotics of eigenvalues of symmetric Toeplitz band matrices // Linear Algebra and its Applications. 2015. V. 469. P. 464–486. https://www.sciencedirect.com/science/article/pii/S0024379514007691
  12. Szego G. Ein Grenzwertsatz uber die Toeplitzschen Determinanten einer reellen positiven Funktion // Math. Annalen. 1915. V. 76. N 4. P. 490–503.
  13. Eloua M. On a relationship between Chebyshev polynomials and Toeplitz determinants // Appl. Math. Comput. 2014. V. 229. P. 27–33.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).