ON THE ASYMPTOTICS OF EIGENVALUES OF SEMIDIAGONAL TOEPLITZ MATRICES
- Authors: Voronin I.V.1
-
Affiliations:
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 64, No 6 (2024)
- Pages: 914-921
- Section: General numerical methods
- URL: https://ogarev-online.ru/0044-4669/article/view/273759
- DOI: https://doi.org/10.31857/S0044466924060029
- EDN: https://elibrary.ru/XZPJFN
- ID: 273759
Cite item
Full Text
Abstract
Asymptotic formulas are constructed that allow a uniform estimate of the remainder term for Toeplitz matrices of size 𝑛 for 𝑛 → ∞ in the case when their symbol 𝑎(𝑡) has the form 𝑎(𝑡) = (𝑡 − 2𝑎0 + 𝑡-1)3. This result is a generalization of the result of Stukopin et al. (2021), in which similar asymptotic formulas were obtained for a diagonal Toeplitz matrix with a symbol of a similar form when 𝑎0 = 1. The obtained formulas have high computational efficiency and generalize the results of the classical works of Parterre and Widom on the asymptotics of extreme eigenvalues.
Keywords
About the authors
I. V. Voronin
Moscow Institute of Physics and Technology (National Research University)
Email: Voronin.I@phystech.edu
Dolgoprudnyi, Moscow oblast, 141700 Russia
References
- Stukopin V., Grudsky S., Voronin I., Barrera M. Asymptotics of the eigenvalues of seven-diagonal Toeplitz matrices of a special form // arXive. 2021. Nov. 2111.07196.
- Savage L. J., Grenander U., Szego G. Toeplitz forms and their Applications // J. Am. Statistic. Associat. 1958. V. 53. N 283. P. 763.
- Schmidt P., Spitzer F. The Toeplitz matrices of an arbitrary Laurent polynomial // Math. Scandinavica. 1960. V. 8. P. 15.
- Widom H. Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index // Oper. Theory Adv. Appl. 1990. V. 48.
- Bottcher A., Grudsky S. M. Spectral properties of banded Toeplitz matrices // Soc. Industrial and Appl. Math. 2005.
- Bottcher A., Silbermann B. Introduction to large truncated Toeplitz matrices. Springer New York, 1999.
- Deift P., It’s A., Krasovsky I. Toeplitz Matrices and Toeplitz determinants under the impetus of the ising model: some history and some recent results // Comm. on Pure and Appl. Math. 2013. V. 66, N 9. P. 1360–1438.
- Deift P., It’s A., Krasovsky I. Eigenvalues of Toeplitz matrices in the bulk of the spectrum // Bull. Inst. Math. Acad. Sin. 2012. V. 7. P. 437–461.
- Kadano L. P. Spin-spin correlations in the two-dimensional ising model // Il Nuovo Cimento B Ser. 10. 1966. V. 44. N 2. P. 276–305.
- McCoy B., Wu T. The Two-Dimensional Ising Model, 1973.
- Batalshchikov A. A., Grudsky S. M., Stukopin V. A. Asymptotics of eigenvalues of symmetric Toeplitz band matrices // Linear Algebra and its Applications. 2015. V. 469. P. 464–486. https://www.sciencedirect.com/science/article/pii/S0024379514007691
- Szego G. Ein Grenzwertsatz uber die Toeplitzschen Determinanten einer reellen positiven Funktion // Math. Annalen. 1915. V. 76. N 4. P. 490–503.
- Eloua M. On a relationship between Chebyshev polynomials and Toeplitz determinants // Appl. Math. Comput. 2014. V. 229. P. 27–33.
Supplementary files


