Sturm–Liouville problem for a one-dimensional thermoelastic operator in Cartesian, cylindrical, and spherical coordinate systems

Capa

Citar

Texto integral

Resumo

The problem of constructing eigenfunctions of a one-dimensional thermoelastic operator in Cartesian, cylindrical, and spherical coordinate systems is considered. The corresponding Sturm–Liouville problem is formulated using Fourier’s separation of variables applied to a coupled system of thermoelasticity equations, assuming that the heat transfer rate is finite. It is shown that the eigenfunctions of the one-dimensional thermoelastic operator are expressed in terms of well-known trigonometric, cylinder, and spherical functions. However, coupled thermoelasticity problems are solved analytically only under certain boundary conditions, whose form is determined by the properties of the eigenfunctions.

Texto integral

Задача Штурма–Лиувилля для одномерного термоупругого оператора в декартовой, цилиндрической и сферической системах координат [1]

1. ВВЕДЕНИЕ

За последнее время опубликовано очень большое количество работ, так или иначе связанных с исследованием эффектов взаимодействия полей различной физической природы: механических, температурных, диффузионных и пр. В частности, можно утверждать, что сформирована достаточно строгая математическая теория термоупругости, основанная на феноменологических подходах и моделях термодинамики и механики сплошной среды (см. [1–4]).

Несмотря на то, что первые модели термоупругости появились еще в середине XIX в., тема не перестает быть актуальной и в настоящее время. Это связано как с развитием научно-экспериментальной базы, так и с тем, что математический аппарат, описывающий связанные термоупругие процессы в сплошных средах постоянно совершенствуется.

При этом большое развитие получили теории, учитывающие конечную скорость распространения тепловых потоков, среди которых можно отметить модели Каттанео, Лорда–Шульмана, Грина–Линсди, Грина–Нагди и т.д. (см. [5–12]). Это обусловлено тем, что классический закон теплопроводности Фурье дает очень большую погрешность при описании высокоскоростных, и в частности, импульсных процессов. Кроме того, можно отметить статьи, где для описания релаксационных эффектов используется аппарат дробного дифференцирования (см. [13–16]) и модели нелокального континуума Эрингена (см. [17–19]), которые позволяют, в известной мере, преодолеть локальность классических линейных моделей.

Однако на сегодняшний день остается немало нерешенных вопросов, связанных с аналитическим решением задач нестационарной связанной термоупругости. Анализ существующих публикаций показывает, что в плане решения соответствующих начально-краевых задач наиболее полно изучены модели в прямоугольной декартовой системе координат. Достаточно подробный обзор работ (правда, применительно к задачам термоупругой диффузии) дан в монографии [20]. Работ, посвященных решению задач темоупругости (в том числе, задач термоупругости с учетом других физических полей) в цилиндрической и сферической системах координат сравнительно немного и среди них можно выделить [21–31].

В этой связи отметим, что при решении задач в криволинейных системах координат очень важной проблемой является нахождение системы собственных функций, являющихся решением соответствующей задачи Штурма–Лиувилля. Этот вопрос достаточно хорошо изучен для начально-краевых задач теории упругости, теплопроводности и несвязанной термоупругости (см. [32–34]). Применительно к связанным задачам термоупругости данный вопрос в известных научных работах не обсуждался.

1. ПОСТАНОВКА ЗАДАЧИ ШТУРМА MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaauFaaaWdbiaa=nbiaaa@38B6@ ЛИУВИЛЛЯ

Для постановки задачи Штурма–Лиувилля рассмотрим однородную систему уравнений, с однородными граничными условиями, описывающую одномерные термоупругие процессы в сплошных средах (см. [2], [3], [32], [35]):

u ¨ = Δ α u α ξ 2 uΛ ϑ ; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadwhagaWaai abg2da9iabgs5aenaaBaaaleaacqaHXoqyaeqaaOGaamyDaiabgkHi TmaalaaabaGaeqySdegabaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaa aakiaadwhacqGHsislcqqHBoatcqaHrpGsdaahaaWcbeqaaOGamai8 gkdiIcaacaGG7aaaaa@4D06@  (1.1)

k=0 M τ 0 k k! k τ k ϑ ˙ b u ˙ + α u ˙ ξ =κ Δ α ϑ; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaqahabaWaaS aaaeaadaqadaqaaiabes8a0naaBaaaleaacaaIWaaabeaaaOGaayjk aiaawMcaamaaCaaaleqabaGaam4AaaaaaOqaaiaadUgacaGGHaaaam aalaaabaGaeyOaIy7aaWbaaSqabeaacaWGRbaaaaGcbaGaeyOaIyRa eqiXdq3aaWbaaSqabeaacaWGRbaaaaaaaeaacaWGRbGaeyypa0JaaG imaaqaaiaad2eaa0GaeyyeIuoakmaadmaabaGafqy0dOKbaiaacqGH sislcaWGIbWaaeWaaeaaceWG1bGbaiaadaahaaWcbeqaaOGamai8gk diIcaacqGHRaWkdaWcaaqaaiabeg7aHjqadwhagaGaaaqaaiabe67a 4baaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpcqaH6oWAcq GHuoardaWgaaWcbaGaeqySdegabeaakiabeg9akjaacUdaaaa@6518@  (1.2)

u Π u =0, ϑ Π T =0, σ Π σ =0, ϑ Π q =0; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaeiaabaGaam yDaaGaayjcSdWaaSbaaSqaaiabfc6aqnaaBaaameaacaWG1baabeaa aSqabaGccqGH9aqpcaaIWaGaaiilaiaaysW7caaMe8+aaqGaaeaacq aHrpGsaiaawIa7amaaBaaaleaacqqHGoaudaWgaaadbaGaamivaaqa baaaleqaaOGaeyypa0JaaGimaiaacYcacaaMe8UaaGjbVpaaeiaaba Gaeq4WdmhacaGLiWoadaWgaaWcbaGaeuiOda1aaSbaaWqaaiabeo8a ZbqabaaaleqaaOGaeyypa0JaaGimaiaacYcacaaMe8UaaGjbVpaaei aabaGaeqy0dO0aaWbaaSqabeaakiadacVHYaIOaaaacaGLiWoadaWg aaWcbaGaeuiOda1aaSbaaWqaaiaadghaaeqaaaWcbeaakiabg2da9i aaicdacaGG7aaaaa@676F@  (1.3)

u τ=0 =0, u ˙ τ=0 =0, k ϑ τ k τ=0 =0 k= 0,M1 ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaeiaabaGaam yDaaGaayjcSdWaaSbaaSqaaiabes8a0jabg2da9iaaicdaaeqaaOGa eyypa0JaaGimaiaacYcacaaMe8UaaGjbVpaaeiaabaGabmyDayaaca aacaGLiWoadaWgaaWcbaGaeqiXdqNaeyypa0JaaGimaaqabaGccqGH 9aqpcaaIWaGaaiilaiaaysW7caaMe8+aaqGaaeaadaWcaaqaaiabgk Gi2oaaCaaaleqabaGaam4Aaaaakiabeg9akbqaaiabgkGi2kabes8a 0naaCaaaleqabaGaam4AaaaaaaaakiaawIa7amaaBaaaleaacqaHep aDcqGH9aqpcaaIWaaabeaakiabg2da9iaaicdacaaMe8UaaGjbVpaa bmaabaGaam4Aaiabg2da9maanaaabaGaaGimaiaacYcacaWGnbGaey OeI0IaaGymaaaaaiaawIcacaGLPaaacaGGUaaaaa@6B1D@  (1.4)

Здесь граница Π=∂G – граница области, занятой телом G 3. Она разбита на участки П = Пu  Пσ = ПT  Пqu   Пσ = ∅, ПT Пθ = ∅ в соответствии с видом приложенной нагрузки. Точки означают производную по времени τ, штрих – производную по криволинейной координате ξ.

Все величины в (1.1)–(1.4) являются безразмерными. Их связь с размерными аналогами дается следующими равенствами:

u=u1L,τ=CtL,C2=С1111ρ,τ0=CτTL,c12=C1122C1111,c11=C1111C1111=1,ξ=ξ1L,Λ=b11T0C1111,b=b11ρc0,κ=κ11ρc0CL,σ=σ11C1111,ϑ=TT0T0,

где t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  время; ξ1 – криволинейная координата (ξ1 = x1 в декартовой системе координат и ξ1 = r – радиальная координата в цилиндрической и сферической системах координат); L – линейный масштаб задачи; u1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  компонента вектора перемещений u= u 1 ξ 1 ,t ,0,0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaahwhacqGH9a qpdaGadaqaaiaadwhadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiab e67a4naaBaaaleaacaaIXaaabeaakiaacYcacaWG0baacaGLOaGaay zkaaGaaiilaiaaysW7caaIWaGaaiilaiaaysW7caaIWaaacaGL7bGa ayzFaaaaaa@4A76@ ; Cijkl MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  компоненты тензора упругих постоянных; ρ – плотность среды; bij – температурные коэффициенты, характеризующие деформации за счет нагрева; κij – компоненты тензора теплопроводности; c0 – удельная теплоемкость; T0 – начальная температура сплошной среды; T – актуальная температура сплошной среды; величина ϑ характеризует относительное приращение температуры; L – безразмерный коэффициент, характеризующий деформации за счет изменения температуры; τT MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  время релаксации тепловых потоков; параметр α = 0 соответствует декартовой системе координат, α = 1 – цилиндрической системе координат и α = 2 – сферической системе координат; Dα – одномерный оператор Лапласа, имеющий вид

Δ α = 2 ξ 2 + α ξ ξ . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabgs5aenaaBa aaleaacqaHXoqyaeqaaOGaeyypa0ZaaSaaaeaacqGHciITdaahaaWc beqaaiaaikdaaaaakeaacqGHciITcqaH+oaEdaahaaWcbeqaaiaaik daaaaaaOGaey4kaSYaaSaaaeaacqaHXoqyaeaacqaH+oaEaaWaaSaa aeaacqGHciITaeaacqGHciITcqaH+oaEaaGaaiOlaaaa@4CEE@

Компонента тензора напряжений σ11 (и ее безразмерный аналог σ) соответствует напряжениям, нормальным к поверхности тела, и определяются по формулам

σ 11 = C 1111 u 1 ξ 1 +α C 1122 u 1 ξ 1 b 11 T T 0 , σ= u ξ +α c 12 u ξ Λϑ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaakiabg2da9iaadoeadaWgaaWc baGaaGymaiaaigdacaaIXaGaaGymaaqabaGcdaWcaaqaaiabgkGi2k aadwhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcqaH+oaEdaWg aaWcbaGaaGymaaqabaaaaOGaey4kaSIaeqySdeMaam4qamaaBaaale aacaaIXaGaaGymaiaaikdacaaIYaaabeaakmaalaaabaGaamyDamaa BaaaleaacaaIXaaabeaaaOqaaiabe67a4naaBaaaleaacaaIXaaabe aaaaGccqGHsislcaWGIbWaaSbaaSqaaiaaigdacaaIXaaabeaakmaa bmaabaGaamivaiabgkHiTiaadsfadaWgaaWcbaGaaGimaaqabaaaki aawIcacaGLPaaacaGGSaaabaGaeq4WdmNaeyypa0ZaaSaaaeaacqGH ciITcaWG1baabaGaeyOaIyRaeqOVdGhaaiabgUcaRiabeg7aHjaado gadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaSaaaeaacaWG1baabaGa eqOVdGhaaiabgkHiTiabfU5amjabeg9akjaac6caaaaa@71C8@  (1.5)

Уравнение теплопроводности (1.2) учитывает релаксацию тепловых потоков, предполагающую конечную скорость распространения тепловых возмущений. Полагая верхний предел суммирования М = 0, приходим к классической модели с бесконечной скоростью распространения тепла; М = 1 соответствует модифицированному закону Фурье в форме Максвелла–Каттанео.

С целью уменьшения объема выкладок постановку и решение задачи Штурма–Лиувилля изложим для случая М = 0 с последующим обобщением для произвольного М. Будем искать решение задачи (1.1)–(1.4) в виде

u ξ,τ =V ξ W τ ,ϑ ξ,τ =Φ ξ Ψ τ . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhadaqada qaaiabe67a4jaacYcacqaHepaDaiaawIcacaGLPaaacqGH9aqpcaWG wbWaaeWaaeaacqaH+oaEaiaawIcacaGLPaaacaWGxbWaaeWaaeaacq aHepaDaiaawIcacaGLPaaacaGGSaGaaGzbVlabeg9aknaabmaabaGa eqOVdGNaaiilaiabes8a0bGaayjkaiaawMcaaiabg2da9iabfA6agn aabmaabaGaeqOVdGhacaGLOaGaayzkaaGaeuiQdK1aaeWaaeaacqaH epaDaiaawIcacaGLPaaacaGGUaaaaa@5D96@  (1.6)

Подставляя (1.6) в (1.1) и (1.2), получаем

V ξ W ¨ τ =W τ Δ α V ξ α ξ 2 V ξ ΛΨ τ Φ ξ , Ψ ˙ τ Φ ξ =κΨ τ Δ α Φ ξ b W ˙ τ V ξ + αV ξ ξ . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaamOvam aabmaabaGaeqOVdGhacaGLOaGaayzkaaGabm4vayaadaWaaeWaaeaa cqaHepaDaiaawIcacaGLPaaacqGH9aqpcaWGxbWaaeWaaeaacqaHep aDaiaawIcacaGLPaaadaqadaqaaiabgs5aenaaBaaaleaacqaHXoqy aeqaaOGaamOvamaabmaabaGaeqOVdGhacaGLOaGaayzkaaGaeyOeI0 YaaSaaaeaacqaHXoqyaeaacqaH+oaEdaahaaWcbeqaaiaaikdaaaaa aOGaamOvamaabmaabaGaeqOVdGhacaGLOaGaayzkaaaacaGLOaGaay zkaaGaeyOeI0Iaeu4MdWKaeuiQdK1aaeWaaeaacqaHepaDaiaawIca caGLPaaacuqHMoGrgaqbamaabmaabaGaeqOVdGhacaGLOaGaayzkaa GaaiilaaqaaiqbfI6azzaacaWaaeWaaeaacqaHepaDaiaawIcacaGL PaaacqqHMoGrdaqadaqaaiabe67a4bGaayjkaiaawMcaaiabg2da9i abeQ7aRjabfI6aznaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaeyiL dq0aaSbaaSqaaiabeg7aHbqabaGccqqHMoGrdaqadaqaaiabe67a4b GaayjkaiaawMcaaiabgkHiTiaadkgaceWGxbGbaiaadaqadaqaaiab es8a0bGaayjkaiaawMcaamaabmaabaGabmOvayaafaWaaeWaaeaacq aH+oaEaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiabeg7aHjaadAfa daqadaqaaiabe67a4bGaayjkaiaawMcaaaqaaiabe67a4baaaiaawI cacaGLPaaacaGGUaaaaaa@936D@  (1.7)

Теперь уравнение движения в (1.7) поделим на V (ξ)W(τ), а уравнение теплопереноса – на Ψ(τ)Ф(ξ). Получаем (суммирование по повторяющимся греческим индексам не проводится)

W ¨ τ W τ = Δ α V ξ V ξ α ξ 2 Λ Ψ τ W τ Φ ξ V ξ , Ψ ˙ τ Ψ τ =κ Δ α Φ ξ Φ ξ b W ˙ τ Ψ τ V ξ Φ ξ + αV ξ ξΦ ξ . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaSaaae aaceWGxbGbamaadaqadaqaaiabes8a0bGaayjkaiaawMcaaaqaaiaa dEfadaqadaqaaiabes8a0bGaayjkaiaawMcaaaaacqGH9aqpdaWcaa qaaiabgs5aenaaBaaaleaacqaHXoqyaeqaaOGaamOvamaabmaabaGa eqOVdGhacaGLOaGaayzkaaaabaGaamOvamaabmaabaGaeqOVdGhaca GLOaGaayzkaaaaaiabgkHiTmaalaaabaGaeqySdegabaGaeqOVdG3a aWbaaSqabeaacaaIYaaaaaaakiabgkHiTiabfU5amnaalaaabaGaeu iQdK1aaeWaaeaacqaHepaDaiaawIcacaGLPaaaaeaacaWGxbWaaeWa aeaacqaHepaDaiaawIcacaGLPaaaaaWaaSaaaeaacuqHMoGrgaqbam aabmaabaGaeqOVdGhacaGLOaGaayzkaaaabaGaamOvamaabmaabaGa eqOVdGhacaGLOaGaayzkaaaaaiaacYcaaeaadaWcaaqaaiqbfI6azz aacaWaaeWaaeaacqaHepaDaiaawIcacaGLPaaaaeaacqqHOoqwdaqa daqaaiabes8a0bGaayjkaiaawMcaaaaacqGH9aqpcqaH6oWAdaWcaa qaaiabgs5aenaaBaaaleaacqaHXoqyaeqaaOGaeuOPdy0aaeWaaeaa cqaH+oaEaiaawIcacaGLPaaaaeaacqqHMoGrdaqadaqaaiabe67a4b GaayjkaiaawMcaaaaacqGHsislcaWGIbWaaSaaaeaaceWGxbGbaiaa daqadaqaaiabes8a0bGaayjkaiaawMcaaaqaaiabfI6aznaabmaaba GaeqiXdqhacaGLOaGaayzkaaaaamaabmaabaWaaSaaaeaaceWGwbGb auaadaqadaqaaiabe67a4bGaayjkaiaawMcaaaqaaiabfA6agnaabm aabaGaeqOVdGhacaGLOaGaayzkaaaaaiabgUcaRmaalaaabaGaeqyS deMaamOvamaabmaabaGaeqOVdGhacaGLOaGaayzkaaaabaGaeqOVdG NaeuOPdy0aaeWaaeaacqaH+oaEaiaawIcacaGLPaaaaaaacaGLOaGa ayzkaaGaaiOlaaaaaa@A4F8@

В полученных равенствах левые части зависят от переменной τ, а правые – от переменных τ и ξ. Для обеспечения равенства потребуем, чтобы обе части этих уравнений не зависели от τ и ξ. В этом случае

W ¨ t W t = γ 2 =const, Ψ ˙ t Ψ t = γ 2 ω=const MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaalaaabaGabm 4vayaadaWaaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGaam4vamaa bmaabaGaamiDaaGaayjkaiaawMcaaaaacqGH9aqpcqGHsislcqaHZo WzdaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaqGJbGaae4Baiaab6ga caqGZbGaaeiDaiaacYcacaaMf8+aaSaaaeaacuqHOoqwgaGaamaabm aabaGaamiDaaGaayjkaiaawMcaaaqaaiabfI6aznaabmaabaGaamiD aaGaayjkaiaawMcaaaaacqGH9aqpcqGHsislcqaHZoWzdaahaaWcbe qaaiaaikdaaaGccqaHjpWDcqGH9aqpcaqGJbGaae4Baiaab6gacaqG ZbGaaeiDaaaa@6030@ , (1.8)

Ψ t W t =q=const, W ˙ t Ψ t = p q =const. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaalaaabaGaeu iQdK1aaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGaam4vamaabmaa baGaamiDaaGaayjkaiaawMcaaaaacqGH9aqpcaWGXbGaeyypa0Jaae 4yaiaab+gacaqGUbGaae4CaiaabshacaGGSaGaaGzbVpaalaaabaGa bm4vayaacaWaaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGaeuiQdK 1aaeWaaeaacaWG0baacaGLOaGaayzkaaaaaiabg2da9maalaaabaGa amiCaaqaaiaadghaaaGaeyypa0Jaae4yaiaab+gacaqGUbGaae4Cai aabshacaGGUaaaaa@5AEE@  (1.9)

В результате приходим к следующей системе уравнений относительно функций V(τ) и Ф(ξ):

γ 2 = 1 V ξ Δ α V ξ αV ξ ξ 2 qΛ Φ ξ V ξ , γ 2 ω= κ Δ α Φ ξ Φ ξ pb qΦ ξ V ξ + αV ξ ξ . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeyOeI0 Iaeq4SdC2aaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaamOvamaabmaabaGaeqOVdGhacaGLOaGaayzkaaaaamaabm aabaGaeyiLdq0aaSbaaSqaaiabeg7aHbqabaGccaWGwbWaaeWaaeaa cqaH+oaEaiaawIcacaGLPaaacqGHsisldaWcaaqaaiabeg7aHjaadA fadaqadaqaaiabe67a4bGaayjkaiaawMcaaaqaaiabe67a4naaCaaa leqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGHsislcaWGXbGaeu 4MdW0aaSaaaeaacuqHMoGrgaqbamaabmaabaGaeqOVdGhacaGLOaGa ayzkaaaabaGaamOvamaabmaabaGaeqOVdGhacaGLOaGaayzkaaaaai aacYcaaeaacqGHsislcqaHZoWzdaahaaWcbeqaaiaaikdaaaGccqaH jpWDcqGH9aqpdaWcaaqaaiabeQ7aRjabgs5aenaaBaaaleaacqaHXo qyaeqaaOGaeuOPdy0aaeWaaeaacqaH+oaEaiaawIcacaGLPaaaaeaa cqqHMoGrdaqadaqaaiabe67a4bGaayjkaiaawMcaaaaacqGHsislda WcaaqaaiaadchacaWGIbaabaGaamyCaiabfA6agnaabmaabaGaeqOV dGhacaGLOaGaayzkaaaaamaabmaabaGabmOvayaafaWaaeWaaeaacq aH+oaEaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiabeg7aHjaadAfa daqadaqaaiabe67a4bGaayjkaiaawMcaaaqaaiabe67a4baaaiaawI cacaGLPaaacaGGUaaaaaa@8DE1@  (1.10)

Для формулировки задачи Штурма–Лиувилля эти уравнения дополняются однородными краевыми условиями, которые будут получены далее.

2. РЕШЕНИЕ ЗАДАЧИ ШТУРМА MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaauFaaaWdbiaa=nbiaaa@38B6@ ЛИУВИЛЛЯ В ДЕКАРТОВОЙ СИСТЕМЕ КООРДИНАТ

В декартовой системе координат уравнения (1.10) запишутся так (ξ = x)

γ 2 = V x V x q Λ Φ x V x , γ 2 ω= κ Φ x Φ x p q b V x Φ x . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeyOeI0 Iaeq4SdC2aaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaaceWG wbGbayaadaqadaqaaiaadIhaaiaawIcacaGLPaaaaeaacaWGwbWaae WaaeaacaWG4baacaGLOaGaayzkaaaaaiabgkHiTiaadghadaWcaaqa aiabfU5amjqbfA6agzaafaWaaeWaaeaacaWG4baacaGLOaGaayzkaa aabaGaamOvamaabmaabaGaamiEaaGaayjkaiaawMcaaaaacaGGSaaa baGaeyOeI0Iaeq4SdC2aaWbaaSqabeaacaaIYaaaaOGaeqyYdCNaey ypa0ZaaSaaaeaacqaH6oWAcuqHMoGrgaGbamaabmaabaGaamiEaaGa ayjkaiaawMcaaaqaaiabfA6agnaabmaabaGaamiEaaGaayjkaiaawM caaaaacqGHsisldaWcaaqaaiaadchaaeaacaWGXbaaamaalaaabaGa amOyaiqadAfagaqbamaabmaabaGaamiEaaGaayjkaiaawMcaaaqaai abfA6agnaabmaabaGaamiEaaGaayjkaiaawMcaaaaacaGGUaaaaaa@6BA2@

Отсюда приходим к следующей системе уравнений относительно функций V(x) и Ф(х):

γ 2 V x = V x qΛ Φ x , γ 2 ωΦ x =κ Φ x p q b V x . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeyOeI0 Iaeq4SdC2aaWbaaSqabeaacaaIYaaaaOGaamOvamaabmaabaGaamiE aaGaayjkaiaawMcaaiabg2da9iqadAfagaGbamaabmaabaGaamiEaa GaayjkaiaawMcaaiabgkHiTiaadghacqqHBoatcuqHMoGrgaqbamaa bmaabaGaamiEaaGaayjkaiaawMcaaiaacYcaaeaacqGHsislcqaHZo WzdaahaaWcbeqaaiaaikdaaaGccqaHjpWDcqqHMoGrdaqadaqaaiaa dIhaaiaawIcacaGLPaaacqGH9aqpcqaH6oWAcuqHMoGrgaGbamaabm aabaGaamiEaaGaayjkaiaawMcaaiabgkHiTmaalaaabaGaamiCaaqa aiaadghaaaGaamOyaiqadAfagaqbamaabmaabaGaamiEaaGaayjkai aawMcaaiaac6caaaaa@6401@  (2.1)

Будем искать решение системы (2.1) в форме

V= V e λx ,Φ= Φ e λx . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfacqGH9a qpcaWGwbWaaWbaaSqabeaacqGHxiIkaaGccaWGLbWaaWbaaSqabeaa cqaH7oaBcaWG4baaaOGaaiilaiaaywW7cqqHMoGrcqGH9aqpcqqHMo GrdaahaaWcbeqaaiabgEHiQaaakiaadwgadaahaaWcbeqaaiabeU7a SjaadIhaaaGccaGGUaaaaa@4C17@  (2.2)

Подставляя (2.2) в (2.1), получаем

λ 2 + γ 2 V qΛλ Φ =0, p q bλ V + κ λ 2 + γ 2 ω Φ =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaeWaae aacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHZoWzdaah aaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaWGwbWaaWbaaSqabe aacqGHxiIkaaGccqGHsislcaWGXbGaeu4MdWKaeq4UdWMaeuOPdy0a aWbaaSqabeaacqGHxiIkaaGccqGH9aqpcaaIWaGaaiilaaqaaiabgk HiTmaalaaabaGaamiCaaqaaiaadghaaaGaamOyaiabeU7aSjaadAfa daahaaWcbeqaaiabgEHiQaaakiabgUcaRmaabmaabaGaeqOUdSMaeq 4UdW2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeq4SdC2aaWbaaSqa beaacaaIYaaaaOGaeqyYdChacaGLOaGaayzkaaGaeuOPdy0aaWbaaS qabeaacqGHxiIkaaGccqGH9aqpcaaIWaGaaiOlaaaaaa@64F6@  (2.3)

Для существования нетривиального решения необходимо потребовать, чтобы определитель этой системы равнялся нулю. Имеем

λ 2 + γ 2 qΛλ p q bλ κ λ 2 + γ 2 ω = = λ 2 + γ 2 κ λ 2 + γ 2 ω pbΛ λ 2 = =κ λ 4 + γ 2 κ+ γ 2 ωpbΛ λ 2 + γ 4 ω=0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqWaae aafaqabeGacaaabaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaey4k aSIaeq4SdC2aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOeI0IaamyCai abfU5amjabeU7aSbqaaiabgkHiTmaalaaabaGaamiCaaqaaiaadgha aaGaamOyaiabeU7aSbqaaiabeQ7aRjabeU7aSnaaCaaaleqabaGaaG OmaaaakiabgUcaRiabeo7aNnaaCaaaleqabaGaaGOmaaaakiabeM8a 3baaaiaawEa7caGLiWoacqGH9aqpaeaacqGH9aqpdaqadaqaaiabeU 7aSnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeo7aNnaaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaamaabmaabaGaeqOUdSMaeq4UdW 2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeq4SdC2aaWbaaSqabeaa caaIYaaaaOGaeqyYdChacaGLOaGaayzkaaGaeyOeI0IaamiCaiaadk gacqqHBoatcqaH7oaBdaahaaWcbeqaaiaaikdaaaGccqGH9aqpaeaa cqGH9aqpcqaH6oWAcqaH7oaBdaahaaWcbeqaaiaaisdaaaGccqGHRa Wkdaqadaqaaiabeo7aNnaaCaaaleqabaGaaGOmaaaakiabeQ7aRjab gUcaRiabeo7aNnaaCaaaleqabaGaaGOmaaaakiabeM8a3jabgkHiTi aadchacaWGIbGaeu4MdWeacaGLOaGaayzkaaGaeq4UdW2aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaeq4SdC2aaWbaaSqabeaacaaI0aaaaO GaeqyYdCNaeyypa0JaaGimaiaac6caaaaa@92E2@  (2.4)

Как видно, введенный ранее параметр q не входит в уравнение (2.4) и, следовательно, его корни также не будут зависеть от q. Поэтому, без ограничения общности, полагаем q = 1. Решение уравнения (2.4) имеет вид

λ l =γ A l , A 1,2,3,4 =± κ+ω pbΛ/ γ 2 ± κ+ω pbΛ/ γ 2 2 4ωκ 2κ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGSbaabeaakiabg2da9iabeo7aNjaadgeadaWgaaWcbaGa amiBaaqabaGccaGGSaGaaGzbVlaadgeadaWgaaWcbaGaaGymaiaacY cacaaIYaGaaiilaiaaiodacaGGSaGaaGinaaqabaGccqGH9aqpcqGH XcqSdaGcaaqaamaalaaabaGaeyOeI0YaaeWaaeaacqaH6oWAcqGHRa WkcqaHjpWDcqGHsisldaWcgaqaaiaadchacaWGIbGaeu4MdWeabaGa eq4SdC2aaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgg laXoaakaaabaWaaeWaaeaacqaH6oWAcqGHRaWkcqaHjpWDcqGHsisl daWcgaqaaiaadchacaWGIbGaeu4MdWeabaGaeq4SdC2aaWbaaSqabe aacaaIYaaaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa kiabgkHiTiaaisdacqaHjpWDcqaH6oWAaSqabaaakeaacaaIYaGaeq OUdSgaaaWcbeaakiaac6caaaa@7148@  (2.5)

Далее, из равенств (1.8) имеем

W ¨ τ + γ 2 W τ =0, Ψ ˙ τ + γ 2 ωΨ τ =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadEfagaWaam aabmaabaGaeqiXdqhacaGLOaGaayzkaaGaey4kaSIaeq4SdC2aaWba aSqabeaacaaIYaaaaOGaam4vamaabmaabaGaeqiXdqhacaGLOaGaay zkaaGaeyypa0JaaGimaiaacYcacaaMf8UafuiQdKLbaiaadaqadaqa aiabes8a0bGaayjkaiaawMcaaiabgUcaRiabeo7aNnaaCaaaleqaba GaaGOmaaaakiabeM8a3jabfI6aznaabmaabaGaeqiXdqhacaGLOaGa ayzkaaGaeyypa0JaaGimaiaac6caaaa@59D8@  (2.6)

Общее решение этих уравнений

W τ = C 1 e iγτ + C 2 e iγτ ,Ψ τ =C e ω γ 2 τ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadEfadaqada qaaiabes8a0bGaayjkaiaawMcaaiabg2da9iaadoeadaWgaaWcbaGa aGymaaqabaGccaWGLbWaaWbaaSqabeaacaWGPbGaeq4SdCMaeqiXdq haaOGaey4kaSIaam4qamaaBaaaleaacaaIYaaabeaakiaadwgadaah aaWcbeqaaiabgkHiTiaadMgacqaHZoWzcqaHepaDaaGccaGGSaGaaG zbVlabfI6aznaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0Ja am4qaiaadwgadaahaaWcbeqaaiabgkHiTiabeM8a3jabeo7aNnaaCa aameqabaGaaGOmaaaaliabes8a0baakiaac6caaaa@5FC0@

Подставляя W (τ) в первое равенство (1.9), при q = 1 получаем

C 1 e iγτ + C 2 e iγτ =C e ω γ 2 τ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeadaWgaa WcbaGaaGymaaqabaGccaWGLbWaaWbaaSqabeaacaWGPbGaeq4SdCMa eqiXdqhaaOGaey4kaSIaam4qamaaBaaaleaacaaIYaaabeaakiaadw gadaahaaWcbeqaaiabgkHiTiaadMgacqaHZoWzcqaHepaDaaGccqGH 9aqpcaWGdbGaamyzamaaCaaaleqabaGaeyOeI0IaeqyYdCNaeq4SdC 2aaWbaaWqabeaacaaIYaaaaSGaeqiXdqhaaOGaaiOlaaaa@5375@

Это равенство возможно, если ω = ±i / γ. При этом одна из констант C1 или C2 должна быть равна нулю, т.е.

ω= i γ C 1 =0,C= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeM8a3jabg2 da9maalaaabaGaamyAaaqaaiabeo7aNbaacaaMf8UaeyO0H4TaaGzb VlaadoeadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaaIWaGaaiilai aaywW7caWGdbGaeyypa0Jaam4qamaaBaaaleaacaaIYaaabeaaaaa@4CA7@  (2.7)

или

ω= i γ C 2 =0,C= C 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeM8a3jabg2 da9iabgkHiTmaalaaabaGaamyAaaqaaiabeo7aNbaacaaMf8UaeyO0 H4TaaGzbVlaadoeadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIWa GaaiilaiaaywW7caWGdbGaeyypa0Jaam4qamaaBaaaleaacaaIXaaa beaakiaac6caaaa@4E50@  (2.8)

Воспользуемся для определенности равенствами (2.7). Тогда из второго равенства (1.9) при q = 1 получаем

iγC e iγτ =pC e iγτ p=iγ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabgkHiTiaadM gacqaHZoWzcaWGdbGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiab eo7aNjabes8a0baakiabg2da9iaadchacaWGdbGaamyzamaaCaaale qabaGaeyOeI0IaamyAaiabeo7aNjabes8a0baakiaaywW7cqGHshI3 caaMf8UaamiCaiabg2da9iabgkHiTiaadMgacqaHZoWzcaGGUaaaaa@5806@  (2.9)

Подставляя полученные для p и ω равенства (2.8) и (2.9) в (2.5), получаем

λ l =γ A l , A 1,2 = γκ+i+iγbΛ ± γκ+i+iγbΛ 2 4iγκ 2κγ l=1,2 , λ 3 = λ 1 , λ 4 = λ 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeq4UdW 2aaSbaaSqaaiaadYgaaeqaaOGaeyypa0Jaeq4SdCMaamyqamaaBaaa leaacaWGSbaabeaakiaacYcacaaMf8UaamyqamaaBaaaleaacaaIXa GaaiilaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiabgkHi TmaabmaabaGaeq4SdCMaeqOUdSMaey4kaSIaamyAaiabgUcaRiaadM gacqaHZoWzcaWGIbGaeu4MdWeacaGLOaGaayzkaaGaeyySae7aaOaa aeaadaqadaqaaiabeo7aNjabeQ7aRjabgUcaRiaadMgacqGHRaWkca WGPbGaeq4SdCMaamOyaiabfU5ambGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaisdacaWGPbGaeq4SdCMaeqOUdSgale qaaaGcbaGaaGOmaiabeQ7aRjabeo7aNbaaaSqabaGccaaMf8+aaeWa aeaacaWGSbGaeyypa0JaaGymaiaacYcacaaIYaaacaGLOaGaayzkaa GaaiilaaqaaiabeU7aSnaaBaaaleaacaaIZaaabeaakiabg2da9iab gkHiTiabeU7aSnaaBaaaleaacaaIXaaabeaakiaacYcacaaMe8UaaG jbVlabeU7aSnaaBaaaleaacaaI0aaabeaakiabg2da9iabgkHiTiab eU7aSnaaBaaaleaacaaIYaaabeaakiaac6caaaaa@887F@  (2.10)

В результате решение задачи (2.1) с учетом (2.2) записывается в форме

V x = V 1 cos λ 1 x + V 2 sin λ 1 x + V 3 cos λ 2 x + V 4 sin λ 2 x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGwbWaaSbaaSqaaiaa igdaaeqaaOGaci4yaiaac+gacaGGZbWaaeWaaeaacqaH7oaBdaWgaa WcbaGaaGymaaqabaGccaWG4baacaGLOaGaayzkaaGaey4kaSIaamOv amaaBaaaleaacaaIYaaabeaakiGacohacaGGPbGaaiOBamaabmaaba Gaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaamiEaaGaayjkaiaawMca aiabgUcaRiaaysW7caWGwbWaaSbaaSqaaiaaiodaaeqaaOGaci4yai aac+gacaGGZbWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGc caWG4baacaGLOaGaayzkaaGaey4kaSIaamOvamaaBaaaleaacaaI0a aabeaakiGacohacaGGPbGaaiOBamaabmaabaGaeq4UdW2aaSbaaSqa aiaaikdaaeqaaOGaamiEaaGaayjkaiaawMcaaiaacYcaaaa@6905@  (2.11)

а выражение для Φ x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfA6agnaabm aabaGaamiEaaGaayjkaiaawMcaaaaa@3C81@  получается из первого уравнения в (2.1):

Φ x = V 1 λ 1 2 γ 2 Λ cos λ 1 x V 2 λ 1 2 γ 2 Λ sin λ 1 x V 3 λ 2 2 γ 2 Λ cos λ 2 x + + V 4 λ 2 2 γ 2 Λ sin λ 2 x . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGafuOPdy KbauaadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcqGHsisl caWGwbWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaacqaH7oaBdaqhaa WcbaGaaGymaaqaaiaaikdaaaGccqGHsislcqaHZoWzdaahaaWcbeqa aiaaikdaaaaakeaacqqHBoataaGaci4yaiaac+gacaGGZbWaaeWaae aacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaWG4baacaGLOaGaayzk aaGaeyOeI0cabaGaeyOeI0IaaGjbVlaadAfadaWgaaWcbaGaaGOmaa qabaGcdaWcaaqaaiabeU7aSnaaDaaaleaacaaIXaaabaGaaGOmaaaa kiabgkHiTiabeo7aNnaaCaaaleqabaGaaGOmaaaaaOqaaiabfU5amb aaciGGZbGaaiyAaiaac6gadaqadaqaaiabeU7aSnaaBaaaleaacaaI XaaabeaakiaadIhaaiaawIcacaGLPaaacqGHsislcaWGwbWaaSbaaS qaaiaaiodaaeqaaOWaaSaaaeaacqaH7oaBdaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccqGHsislcqaHZoWzdaahaaWcbeqaaiaaikdaaaaake aacqqHBoataaGaci4yaiaac+gacaGGZbWaaeWaaeaacqaH7oaBdaWg aaWcbaGaaGOmaaqabaGccaWG4baacaGLOaGaayzkaaGaey4kaScaba Gaey4kaSIaaGjbVlaadAfadaWgaaWcbaGaaGinaaqabaGcdaWcaaqa aiabeU7aSnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgkHiTiabeo 7aNnaaCaaaleqabaGaaGOmaaaaaOqaaiabfU5ambaaciGGZbGaaiyA aiaac6gadaqadaqaaiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadI haaiaawIcacaGLPaaacaGGUaaaaaa@8FD5@

Интегрируя, находим

Φ x = V 1 ω 1 sin λ 1 x V 2 ω 1 cos λ 1 x + + V 3 ω 2 sin λ 2 x V 4 ω 2 cos λ 2 x , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeuOPdy 0aaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaamOvamaaBaaa leaacaaIXaaabeaakiabeM8a3naaBaaaleaacaaIXaaabeaakiGaco hacaGGPbGaaiOBamaabmaabaGaeq4UdW2aaSbaaSqaaiaaigdaaeqa aOGaamiEaaGaayjkaiaawMcaaiabgkHiTiaadAfadaWgaaWcbaGaaG OmaaqabaGccqaHjpWDdaWgaaWcbaGaaGymaaqabaGcciGGJbGaai4B aiaacohadaqadaqaaiabeU7aSnaaBaaaleaacaaIXaaabeaakiaadI haaiaawIcacaGLPaaacqGHRaWkaeaacqGHRaWkcaaMe8UaamOvamaa BaaaleaacaaIZaaabeaakiabeM8a3naaBaaaleaacaaIYaaabeaaki GacohacaGGPbGaaiOBamaabmaabaGaeq4UdW2aaSbaaSqaaiaaikda aeqaaOGaamiEaaGaayjkaiaawMcaaiabgkHiTiaadAfadaWgaaWcba GaaGinaaqabaGccqaHjpWDdaWgaaWcbaGaaGOmaaqabaGcciGGJbGa ai4BaiaacohadaqadaqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaki aadIhaaiaawIcacaGLPaaacaGGSaaaaaa@759F@  (2.12)

где

ω 1 = γ 2 λ 1 2 Λ λ 1 , ω 2 = γ 2 λ 2 2 Λ λ 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeM8a3naaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaeq4SdC2aaWbaaSqa beaacaaIYaaaaOGaeyOeI0Iaeq4UdW2aa0baaSqaaiaaigdaaeaaca aIYaaaaaGcbaGaeu4MdWKaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaaa kiaacYcacaaMf8UaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0 ZaaSaaaeaacqaHZoWzdaahaaWcbeqaaiaaikdaaaGccqGHsislcqaH 7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakeaacqqHBoatcqaH7o aBdaWgaaWcbaGaaGOmaaqabaaaaOGaaiOlaaaa@5923@  (2.13)

Постоянные Vl находятся из граничных условий. Вначале рассмотрим граничные условия (фиксируются граничное поле перемещений и температурный поток):

V x=0 =0, V x=1 =0, Φ x=0 =0, Φ x=1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaeiaabaGaam OvaaGaayjcSdWaaSbaaSqaaiaadIhacqGH9aqpcaaIWaaabeaakiab g2da9iaaicdacaGGSaGaaGzbVpaaeiaabaGaamOvaaGaayjcSdWaaS baaSqaaiaadIhacqGH9aqpcaaIXaaabeaakiabg2da9iaaicdacaGG SaGaaGzbVpaaeiaabaGafuOPdyKbauaaaiaawIa7amaaBaaaleaaca WG4bGaeyypa0JaaGimaaqabaGccqGH9aqpcaaIWaGaaiilaiaaywW7 daabcaqaaiqbfA6agzaafaaacaGLiWoadaWgaaWcbaGaamiEaiabg2 da9iaaigdaaeqaaOGaeyypa0JaaGimaiaac6caaaa@5DD6@  (2.14)

Подстановкой (2.11) и (2.12) в (2.14) получаем следующую систему линейных алгебраических уравнений:

V 1 + V 3 =0, V 1 ω 1 λ 1 + V 3 ω 2 λ 2 =0, V 1 cos λ 1 + V 2 sin λ 1 + V 3 cos λ 2 + V 4 sin λ 2 =0, V 1 λ 1 ω 1 cos λ 1 + V 2 λ 1 ω 1 sin λ 1 + V 3 λ 2 ω 2 cos λ 2 + V 4 λ 2 ω 2 sin λ 2 =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOvam aaBaaaleaacaaIXaaabeaakiabgUcaRiaadAfadaWgaaWcbaGaaG4m aaqabaGccqGH9aqpcaaIWaGaaiilaiaaysW7caaMe8UaamOvamaaBa aaleaacaaIXaaabeaakiabeM8a3naaBaaaleaacaaIXaaabeaakiab eU7aSnaaBaaaleaacaaIXaaabeaakiabgUcaRiaadAfadaWgaaWcba GaaG4maaqabaGccqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqaH7oaB daWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIWaGaaiilaaqaaiaadA fadaWgaaWcbaGaaGymaaqabaGcciGGJbGaai4BaiaacohacqaH7oaB daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGwbWaaSbaaSqaaiaaik daaeqaaOGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaaigda aeqaaOGaey4kaSIaamOvamaaBaaaleaacaaIZaaabeaakiGacogaca GGVbGaai4CaiabeU7aSnaaBaaaleaacaaIYaaabeaakiabgUcaRiaa dAfadaWgaaWcbaGaaGinaaqabaGcciGGZbGaaiyAaiaac6gacqaH7o aBdaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIWaGaaiilaaqaaiaa dAfadaWgaaWcbaGaaGymaaqabaGccqaH7oaBdaWgaaWcbaGaaGymaa qabaGccqaHjpWDdaWgaaWcbaGaaGymaaqabaGcciGGJbGaai4Baiaa cohacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGwbWaaS baaSqaaiaaikdaaeqaaOGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGa eqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaci4CaiaacMgacaGGUbGaeq 4UdW2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOvamaaBaaaleaa caaIZaaabeaakiabeU7aSnaaBaaaleaacaaIYaaabeaakiabeM8a3n aaBaaaleaacaaIYaaabeaakiGacogacaGGVbGaai4CaiabeU7aSnaa BaaaleaacaaIYaaabeaakiabgUcaRiaadAfadaWgaaWcbaGaaGinaa qabaGccqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqaHjpWDdaWgaaWc baGaaGOmaaqabaGcciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcba GaaGOmaaqabaGccqGH9aqpcaaIWaGaaiOlaaaaaa@AE46@

Решая ее, получаем либо

V 1 = V 3 = V 4 =0, λ 1n =πn,n, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaWGwbWaaSbaaSqaaiaaiodaaeqa aOGaeyypa0JaamOvamaaBaaaleaacaaI0aaabeaakiabg2da9iaaic dacaGGSaGaaGzbVlabeU7aSnaaBaaaleaacaaIXaGaamOBaaqabaGc cqGH9aqpcqaHapaCcaWGUbGaaiilaiaaywW7caWGUbGaeyicI4SaeS ijHiQaaiilaaaa@521F@

либо

V 1 = V 3 = V 2 =0, λ 2n =πn,n. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaWGwbWaaSbaaSqaaiaaiodaaeqa aOGaeyypa0JaamOvamaaBaaaleaacaaIYaaabeaakiabg2da9iaaic dacaGGSaGaaGzbVlabeU7aSnaaBaaaleaacaaIYaGaamOBaaqabaGc cqGH9aqpcqaHapaCcaWGUbGaaiilaiaaywW7caWGUbGaeyicI4SaeS ijHiQaaiOlaaaa@5220@

И в том, и в другом случаях приходим к одному и тому же набору собственных функций sin λ n x,cos λ n x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaacmaabaGaci 4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamiE aiaacYcacaaMe8UaaGjbVlGacogacaGGVbGaai4CaiabeU7aSnaaBa aaleaacaWGUbaabeaakiaadIhaaiaawUhacaGL9baaaaa@4BDB@ , λ n =πn MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaakiabg2da9iabec8aWjaad6gaaaa@3F14@ , с помощью которых решение задачи (2.1) с краевыми условиями (2.14) запишется так:

V x = n=1 v n sin λ n x , Φ x = n=0 φ n cos λ n x λ n =πn . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOvam aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaqahabaGaamOD amaaBaaaleaacaWGUbaabeaakiGacohacaGGPbGaaiOBaiabeU7aSn aaBaaaleaacaWGUbaabeaakiaadIhaaSqaaiaad6gacqGH9aqpcaaI XaaabaGaeyOhIukaniabggHiLdGccaGGSaaabaGaeuOPdy0aaeWaae aacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaabCaeaacqaHgpGAdaWg aaWcbaGaamOBaaqabaGcciGGJbGaai4BaiaacohacqaH7oaBdaWgaa WcbaGaamOBaaqabaGccaWG4baaleaacaWGUbGaeyypa0JaaGimaaqa aiabg6HiLcqdcqGHris5aOGaaGzbVpaabmaabaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaeyypa0JaeqiWdaNaamOBaaGaayjkaiaawMca aiaac6caaaaa@6C4C@  (2.15)

Аналогичным образом доказывается, что в случае граничных условий, где фиксируется нормальное напряжение и температурное поле,

V ΛΦ x=0 =0, V ΛΦ x=1 =0, Φ x=0 =0, Φ x=1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaeiaabaWaae WaaeaaceWGwbGbauaacqGHsislcqqHBoatcqqHMoGraiaawIcacaGL PaaaaiaawIa7amaaBaaaleaacaWG4bGaeyypa0JaaGimaaqabaGccq GH9aqpcaaIWaGaaiilaiaaywW7daabcaqaamaabmaabaGabmOvayaa faGaeyOeI0Iaeu4MdWKaeuOPdyeacaGLOaGaayzkaaaacaGLiWoada WgaaWcbaGaamiEaiabg2da9iaaigdaaeqaaOGaeyypa0JaaGimaiaa cYcacaaMf8+aaqGaaeaacqqHMoGraiaawIa7amaaBaaaleaacaWG4b Gaeyypa0JaaGimaaqabaGccqGH9aqpcaaIWaGaaiilaiaaywW7daab caqaaiabfA6agbGaayjcSdWaaSbaaSqaaiaadIhacqGH9aqpcaaIXa aabeaakiabg2da9iaaicdaaaa@67EE@ , (2.16)

решение имеет вид

V x = n=0 v n cos λ n x , Φ x = n=1 φ n sin λ n x λ n =πn . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOvam aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaqahabaGaamOD amaaBaaaleaacaWGUbaabeaakiGacogacaGGVbGaai4CaiabeU7aSn aaBaaaleaacaWGUbaabeaakiaadIhaaSqaaiaad6gacqGH9aqpcaaI WaaabaGaeyOhIukaniabggHiLdGccaGGSaaabaGaeuOPdy0aaeWaae aacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaabCaeaacqaHgpGAdaWg aaWcbaGaamOBaaqabaGcciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaa WcbaGaamOBaaqabaGccaWG4baaleaacaWGUbGaeyypa0JaaGymaaqa aiabg6HiLcqdcqGHris5aOGaaGzbVpaabmaabaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaeyypa0JaeqiWdaNaamOBaaGaayjkaiaawMca aiaac6caaaaa@6C4C@  (2.17)

Еще одни краевые условия, для которых аналогичным образом можно найти систему собственных функций, имеют вид

V x=0 =0, V ΛΦ x=1 =0, Φ x=0 =0, Φ x=1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqGaae aacaWGwbaacaGLiWoadaWgaaWcbaGaamiEaiabg2da9iaaicdaaeqa aOGaeyypa0JaaGimaiaacYcacaaMf8+aaqGaaeaadaqadaqaaiqadA fagaqbaiabgkHiTiabfU5amjabfA6agbGaayjkaiaawMcaaaGaayjc SdWaaSbaaSqaaiaadIhacqGH9aqpcaaIXaaabeaakiabg2da9iaaic dacaGGSaaabaWaaqGaaeaacuqHMoGrgaqbaaGaayjcSdWaaSbaaSqa aiaadIhacqGH9aqpcaaIWaaabeaakiabg2da9iaaicdacaGGSaGaaG zbVpaaeiaabaGaeuOPdyeacaGLiWoadaWgaaWcbaGaamiEaiabg2da 9iaaigdaaeqaaOGaeyypa0JaaGimaiaac6caaaaa@61B5@  (2.18)

В этом случае

V x = n=1 v n sin λ n x , Φ x = n=1 φ n cos λ n x λ n =π 2n1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOvam aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaqahabaGaamOD amaaBaaaleaacaWGUbaabeaakiGacohacaGGPbGaaiOBaiabeU7aSn aaBaaaleaacaWGUbaabeaakiaadIhaaSqaaiaad6gacqGH9aqpcaaI XaaabaGaeyOhIukaniabggHiLdGccaGGSaaabaGaeuOPdy0aaeWaae aacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaabCaeaacqaHgpGAdaWg aaWcbaGaamOBaaqabaGcciGGJbGaai4BaiaacohacqaH7oaBdaWgaa WcbaGaamOBaaqabaGccaWG4baaleaacaWGUbGaeyypa0JaaGymaaqa aiabg6HiLcqdcqGHris5aOGaaGzbVpaabmaabaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaeyypa0JaeqiWda3aaSaaaeaacaaIYaGaamOB aiabgkHiTiaaigdaaeaacaaIYaaaaaGaayjkaiaawMcaaiaac6caaa aa@6F7D@  (2.19)

Если в (2.18) поменять границы местами, то получим соответственно

V ΛΦ x=0 =0, V x=1 =0, Φ x=0 =0, Φ x=1 =0; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaeiaabaWaae WaaeaaceWGwbGbauaacqGHsislcqqHBoatcqqHMoGraiaawIcacaGL PaaaaiaawIa7amaaBaaaleaacaWG4bGaeyypa0JaaGimaaqabaGccq GH9aqpcaaIWaGaaiilaiaaywW7daabcaqaaiaadAfaaiaawIa7amaa BaaaleaacaWG4bGaeyypa0JaaGymaaqabaGccqGH9aqpcaaIWaGaai ilaiaaysW7daabcaqaaiaaysW7cqqHMoGraiaawIa7amaaBaaaleaa caWG4bGaeyypa0JaaGimaaqabaGccqGH9aqpcaaIWaGaaiilaiaayw W7daabcaqaaiqbfA6agzaafaaacaGLiWoadaWgaaWcbaGaamiEaiab g2da9iaaigdaaeqaaOGaeyypa0JaaGimaiaacUdaaaa@64D4@  (2.20)

V x = n=1 v n cos λ n x , Φ x = n=1 φ n sin λ n x λ n =π 2n1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOvam aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaqahabaGaamOD amaaBaaaleaacaWGUbaabeaakiGacogacaGGVbGaai4CaiabeU7aSn aaBaaaleaacaWGUbaabeaakiaadIhaaSqaaiaad6gacqGH9aqpcaaI XaaabaGaeyOhIukaniabggHiLdGccaGGSaaabaGaeuOPdy0aaeWaae aacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaabCaeaacqaHgpGAdaWg aaWcbaGaamOBaaqabaGcciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaa WcbaGaamOBaaqabaGccaWG4baaleaacaWGUbGaeyypa0JaaGymaaqa aiabg6HiLcqdcqGHris5aOGaaGzbVpaabmaabaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaeyypa0JaeqiWda3aaSaaaeaacaaIYaGaamOB aiabgkHiTiaaigdaaeaacaaIYaaaaaGaayjkaiaawMcaaiaac6caaa aa@6F7D@  (2.21)

Вид рассмотренных здесь граничных условий целиком и полностью определяется свойствами производных тригонометрических функций, согласно которым параметр λ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B54@  может удовлетворять одной из пар уравнений

sin λ n =0,cos λ n =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaci 4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGL OaGaayzkaaWaaWbaaSqabeaakiadacVHYaIOaaGaeyypa0JaaGimai aacYcacaaMf8Uaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaa d6gaaeqaaOGaeyypa0JaaGimaiaacYcaaaa@4F0C@

либо

cos λ n =0,sin λ n =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaci 4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGL OaGaayzkaaWaaWbaaSqabeaakiadacVHYaIOaaGaeyypa0JaaGimai aacYcacaaMf8Uaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaa d6gaaeqaaOGaeyypa0JaaGimaiaac6caaaa@4F0E@

С учетом физического смысла это позволяет составить четыре вида граничных условий (2.14), (2.16), (2.18) и (2.20), которые и рассмотрены здесь.

В остальных случаях нахождение собственных функций не представляется возможным (см. [20]). Причем, под «остальными» краевыми условиями подразумеваются не просто другие условия, а условия, не являющиеся подобными по отношению к рассмотренным. Например, краевые условия, содержащие линейные комбинации величин

V 2k2 x , Φ 2l1 x k,l , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaahaa WcbeqaamaabmaabaGaaGOmaiaadUgacqGHsislcaaIYaaacaGLOaGa ayzkaaaaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaiilaiaayw W7cqqHMoGrdaahaaWcbeqaamaabmaabaGaaGOmaiaadYgacqGHsisl caaIXaaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWG4baacaGLOaGaay zkaaGaaGzbVpaabmaabaGaam4AaiaacYcacaWGSbGaeyicI4SaeSyf HukacaGLOaGaayzkaaGaaiilaaaa@5592@

являются подобными условиям (2.13) в том смысле, что решение соответствующей краевой задачи тоже будет иметь вид (2.14). Следовательно, краевые условия, представляющие собой линейные комбинации величин

V 2k1 x , Φ 2l2 x k,l , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaahaa WcbeqaamaabmaabaGaaGOmaiaadUgacqGHsislcaaIXaaacaGLOaGa ayzkaaaaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaiilaiaayw W7cqqHMoGrdaahaaWcbeqaamaabmaabaGaaGOmaiaadYgacqGHsisl caaIYaaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWG4baacaGLOaGaay zkaaGaaGzbVpaabmaabaGaam4AaiaacYcacaWGSbGaeyicI4SaeSyf HukacaGLOaGaayzkaaGaaiilaaaa@5592@

подобны (2.16) и т.д.

3. РЕШЕНИЕ ЗАДАЧИ ШТУРМА MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaauFaaaWdbiaa=nbiaaa@38B6@ ЛИУВИЛЛЯ В ЦИЛИНДРИЧЕСКОЙ И СФЕРИЧЕСКОЙ СИСТЕМАХ КООРДИНАТ

Уравнения (1.10) для одномерного термоупругого дифференциального оператора в цилиндрической и сферической системах координат записывается так:

γ 2 V r = V r + α V r r αV r r 2 Λ Φ r , iγΦ r =κ Φ r + α Φ r r +iγb V r + αV r r . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeyOeI0 Iaeq4SdC2aaWbaaSqabeaacaaIYaaaaOGaamOvamaabmaabaGaamOC aaGaayjkaiaawMcaaiabg2da9iqadAfagaGbamaabmaabaGaamOCaa GaayjkaiaawMcaaiabgUcaRmaalaaabaGaeqySdeMabmOvayaafaWa aeWaaeaacaWGYbaacaGLOaGaayzkaaaabaGaamOCaaaacqGHsislda Wcaaqaaiabeg7aHjaadAfadaqadaqaaiaadkhaaiaawIcacaGLPaaa aeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiabfU5amj qbfA6agzaafaWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaaiilaaqa aiabgkHiTiaadMgacqaHZoWzcqqHMoGrdaqadaqaaiaadkhaaiaawI cacaGLPaaacqGH9aqpcqaH6oWAdaWadaqaaiqbfA6agzaagaWaaeWa aeaacaWGYbaacaGLOaGaayzkaaGaey4kaSYaaSaaaeaacqaHXoqycu qHMoGrgaqbamaabmaabaGaamOCaaGaayjkaiaawMcaaaqaaiaadkha aaaacaGLBbGaayzxaaGaey4kaSIaaGjbVlaadMgacqaHZoWzcaWGIb WaamWaaeaaceWGwbGbauaadaqadaqaaiaadkhaaiaawIcacaGLPaaa cqGHRaWkdaWcaaqaaiabeg7aHjaadAfadaqadaqaaiaadkhaaiaawI cacaGLPaaaaeaacaWGYbaaaaGaay5waiaaw2faaiaac6caaaaa@8456@  (3.1)

Здесь сразу положено p=iγ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadchacqGH9a qpcqGHsislcaWGPbGaeq4SdCgaaa@3DFF@ , ω=i γ 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeM8a3jabg2 da9iaadMgacqaHZoWzdaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@3FBF@  и q=1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadghacqGH9a qpcaaIXaaaaa@3B39@ .

Учитывая вид дифференциальных операторов второго порядка в уравнениях (3.1), решение в кольце R 1 r R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkfadaWgaa WcbaGaaGymaaqabaGccqGHKjYOcaWGYbGaeyizImQaamOuamaaBaaa leaacaaIYaaabeaaaaa@406A@  будем искать в виде

V r = V J 1 α λr + V Y 1 α λr , Φ r = Φ J 0 α λr + Φ Y 0 α λr , J μ α z = J μ z ,α=1, j μ z ,α=2, Y μ α z = Y μ z ,α=1, y μ z ,α=2, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOvam aabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da9iaadAfadaahaaWc beqaaiabgEHiQaaakiaadQeadaqhaaWcbaGaaGymaaqaamaabmaaba GaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBcaWGYbaa caGLOaGaayzkaaGaey4kaSIaamOvamaaCaaaleqabaGaey4fIOIaey 4fIOcaaOGaamywamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqy aiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSjaadkhaaiaawIcaca GLPaaacaGGSaaabaGaeuOPdy0aaeWaaeaacaWGYbaacaGLOaGaayzk aaGaeyypa0JaeuOPdy0aaWbaaSqabeaacqGHxiIkaaGccaWGkbWaa0 baaSqaaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaa kmaabmaabaGaeq4UdWMaamOCaaGaayjkaiaawMcaaiabgUcaRiabfA 6agnaaCaaaleqabaGaey4fIOIaey4fIOcaaOGaamywamaaDaaaleaa caaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqada qaaiabeU7aSjaadkhaaiaawIcacaGLPaaacaGGSaaabaGaamOsamaa DaaaleaacqaH8oqBaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaa aakmaabmaabaGaamOEaaGaayjkaiaawMcaaiabg2da9maaceaaeaqa beaacaWGkbWaaSbaaSqaaiabeY7aTbqabaGcdaqadaqaaiaadQhaai aawIcacaGLPaaacaGGSaGaaGzbVlabeg7aHjabg2da9iaaigdacaGG SaaabaGaamOAamaaBaaaleaacqaH8oqBaeqaaOWaaeWaaeaacaWG6b aacaGLOaGaayzkaaGaaiilaiaaywW7cqaHXoqycqGH9aqpcaaIYaGa aiilaaaacaGL7baacaaMf8UaamywamaaDaaaleaacqaH8oqBaeaada qadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaamOEaaGa ayjkaiaawMcaaiabg2da9maaceaaeaqabeaacaWGzbWaaSbaaSqaai abeY7aTbqabaGcdaqadaqaaiaadQhaaiaawIcacaGLPaaacaGGSaGa aGzbVlabeg7aHjabg2da9iaaigdacaGGSaaabaGaamyEamaaBaaale aacqaH8oqBaeqaaOWaaeWaaeaacaWG6baacaGLOaGaayzkaaGaaiil aiaaywW7cqaHXoqycqGH9aqpcaaIYaGaaiilaaaacaGL7baaaaaa@BA27@  (3.2)

где J μ z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaWgaa WcbaGaeqiVd0gabeaakmaabmaabaGaamOEaaGaayjkaiaawMcaaaaa @3DC5@  – цилиндрическая функция Бесселя 1-го рода порядка μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTbaa@3A38@ ; Y μ z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfadaWgaa WcbaGaeqiVd0gabeaakmaabmaabaGaamOEaaGaayjkaiaawMcaaaaa @3DD4@  – цилиндрическая функция Бесселя 2-го рода (функция Неймана) порядка μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTbaa@3A38@ . Соответственно j μ z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQgadaWgaa WcbaGaeqiVd0gabeaakmaabmaabaGaamOEaaGaayjkaiaawMcaaaaa @3DE5@  – сферическая функция Бесселя 1-го рода порядка μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTbaa@3A38@ ; y μ z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhadaWgaa WcbaGaeqiVd0gabeaakmaabmaabaGaamOEaaGaayjkaiaawMcaaaaa @3DF4@  – сферическая функция Бесселя 2-го рода (функция Неймана) порядка μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTbaa@3A38@ .

Подставляя (3.2) в (3.1), с учетом свойств производных бесселевых функций (см. [33], [36]), получаем

λ 2 γ 2 V +λΛ Φ =0,iγλb V + κ λ 2 iγ Φ =0, λ 2 γ 2 V +λΛ Φ =0,iγλb V + κ λ 2 iγ Φ =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaeWaae aacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccqGHsislcqaHZoWzdaah aaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaWGwbWaaWbaaSqabe aacqGHxiIkaaGccqGHRaWkcqaH7oaBcqqHBoatcqqHMoGrdaahaaWc beqaaiabgEHiQaaakiabg2da9iaaicdacaGGSaGaaGjbVlaaysW7cq GHsislcaWGPbGaeq4SdCMaeq4UdWMaamOyaiaadAfadaahaaWcbeqa aiabgEHiQaaakiabgUcaRmaabmaabaGaeqOUdSMaeq4UdW2aaWbaaS qabeaacaaIYaaaaOGaeyOeI0IaamyAaiabeo7aNbGaayjkaiaawMca aiabfA6agnaaCaaaleqabaGaey4fIOcaaOGaeyypa0JaaGimaiaacY caaeaadaqadaqaaiabeU7aSnaaCaaaleqabaGaaGOmaaaakiabgkHi Tiabeo7aNnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadA fadaahaaWcbeqaaiabgEHiQiabgEHiQaaakiabgUcaRiabeU7aSjab fU5amjabfA6agnaaCaaaleqabaGaey4fIOIaey4fIOcaaOGaeyypa0 JaaGimaiaacYcacaaMe8UaaGjbVlabgkHiTiaadMgacqaHZoWzcqaH 7oaBcaWGIbGaamOvamaaCaaaleqabaGaey4fIOIaey4fIOcaaOGaey 4kaSYaaeWaaeaacqaH6oWAcqaH7oaBdaahaaWcbeqaaiaaikdaaaGc cqGHsislcaWGPbGaeq4SdCgacaGLOaGaayzkaaGaeuOPdy0aaWbaaS qabeaacqGHxiIkcqGHxiIkaaGccqGH9aqpcaaIWaGaaiOlaaaaaa@9709@  (3.3)

Как видно, уравнения (3.3) аналогичны уравнениям (2.3). Соответственно их решения будут иметь вид, сходный с (2.10):

λ l =γ A l , A 1,2 = γκ+i+iγbΛ± γκ+i+iγbΛ 2 4iγκ 2κγ l=1,2 , λ 3 = λ 1 , λ 4 = λ 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeq4UdW 2aaSbaaSqaaiaadYgaaeqaaOGaeyypa0Jaeq4SdCMaamyqamaaBaaa leaacaWGSbaabeaakiaacYcacaaMf8UaamyqamaaBaaaleaacaaIXa GaaiilaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiabeo7a NjabeQ7aRjabgUcaRiaadMgacqGHRaWkcaWGPbGaeq4SdCMaamOyai abfU5amjabgglaXoaakaaabaWaaeWaaeaacqaHZoWzcqaH6oWAcqGH RaWkcaWGPbGaey4kaSIaamyAaiabeo7aNjaadkgacqqHBoataiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0aGaamyA aiabeo7aNjabeQ7aRbWcbeaaaOqaaiaaikdacqaH6oWAcqaHZoWzaa aaleqaaOGaaGzbVpaabmaabaGaamiBaiabg2da9iaaigdacaGGSaGa aGOmaaGaayjkaiaawMcaaiaacYcaaeaacqaH7oaBdaWgaaWcbaGaaG 4maaqabaGccqGH9aqpcqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqa baGccaGGSaGaaGjbVlabeU7aSnaaBaaaleaacaaI0aaabeaakiabg2 da9iabgkHiTiabeU7aSnaaBaaaleaacaaIYaaabeaakiaac6caaaaa @847C@  (3.4)

Таким образом,

V r = l=1 4 V l J 1 α λ l r + V l Y 1 α λ l r , Φ r = l=1 4 Φ l J 0 α λ l r + Φ l Y 0 α λ l r . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaamOvam aabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da9maaqahabaWaamWa aeaacaWGwbWaa0baaSqaaiaadYgaaeaacqGHxiIkaaGccaWGkbWaa0 baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaa kmaabmaabaGaeq4UdW2aaSbaaSqaaiaadYgaaeqaaOGaamOCaaGaay jkaiaawMcaaiabgUcaRiaadAfadaqhaaWcbaGaamiBaaqaaiabgEHi QiabgEHiQaaakiaadMfadaqhaaWcbaGaaGymaaqaamaabmaabaGaeq ySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGa amiBaaqabaGccaWGYbaacaGLOaGaayzkaaaacaGLBbGaayzxaaaale aacaWGSbGaeyypa0JaaGymaaqaaiaaisdaa0GaeyyeIuoakiaacYca aeaacqqHMoGrdaqadaqaaiaadkhaaiaawIcacaGLPaaacqGH9aqpda aeWbqaamaadmaabaGaeuOPdy0aa0baaSqaaiaadYgaaeaacqGHxiIk aaGccaWGkbWaa0baaSqaaiaaicdaaeaadaqadaqaaiabeg7aHbGaay jkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaadYgaaeqa aOGaamOCaaGaayjkaiaawMcaaiabgUcaRiabfA6agnaaDaaaleaaca WGSbaabaGaey4fIOIaey4fIOcaaOGaamywamaaDaaaleaacaaIWaaa baWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU 7aSnaaBaaaleaacaWGSbaabeaakiaadkhaaiaawIcacaGLPaaaaiaa wUfacaGLDbaaaSqaaiaadYgacqGH9aqpcaaIXaaabaGaaGinaaqdcq GHris5aOGaaiOlaaaaaa@8C7C@

Так как J 1 α z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacaWG6baacaGLOaGaayzkaaaaaa@3FF3@  и Y 1 α z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfadaqhaa WcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacaWG6baacaGLOaGaayzkaaaaaa@4002@  – нечетные функции, а J 0 α z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacaWG6baacaGLOaGaayzkaaaaaa@3FF2@  и Y 0 α z MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfadaqhaa WcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacaWG6baacaGLOaGaayzkaaaaaa@4001@  – четные функции, то

J 1 α λ 3 r = J 1 α λ 1 r , J 1 α λ 4 r = J 1 α λ 2 r , J 0 α λ 3 r = J 0 α λ 1 r , J 0 α λ 4 r = J 0 α λ 2 r , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOsam aaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaa aaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIZaaabeaakiaadkhaai aawIcacaGLPaaacqGH9aqpcqGHsislcaWGkbWaa0baaSqaaiaaigda aeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq 4UdW2aaSbaaSqaaiaaigdaaeqaaOGaamOCaaGaayjkaiaawMcaaiaa cYcacaaMe8UaaGjbVlaadQeadaqhaaWcbaGaaGymaaqaamaabmaaba GaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWc baGaaGinaaqabaGccaWGYbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0 IaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaki aadkhaaiaawIcacaGLPaaacaGGSaaabaGaamOsamaaDaaaleaacaaI WaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaai abeU7aSnaaBaaaleaacaaIZaaabeaakiaadkhaaiaawIcacaGLPaaa cqGH9aqpcaWGkbWaa0baaSqaaiaaicdaaeaadaqadaqaaiabeg7aHb GaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaaigda aeqaaOGaamOCaaGaayjkaiaawMcaaiaacYcacaaMe8UaaGjbVlaadQ eadaqhaaWcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGinaaqabaGccaWGYb aacaGLOaGaayzkaaGaeyypa0JaamOsamaaDaaaleaacaaIWaaabaWa aeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSn aaBaaaleaacaaIYaaabeaakiaadkhaaiaawIcacaGLPaaacaGGSaaa aaa@97E8@

Y 1 α λ 3 r = Y 1 α λ 1 r , Y 1 α λ 4 r = Y 1 α λ 2 r , Y 0 α λ 3 r = Y 0 α λ 1 r , Y 0 α λ 4 r = Y 0 α λ 2 r . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamywam aaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaa aaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIZaaabeaakiaadkhaai aawIcacaGLPaaacqGH9aqpcqGHsislcaWGzbWaa0baaSqaaiaaigda aeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq 4UdW2aaSbaaSqaaiaaigdaaeqaaOGaamOCaaGaayjkaiaawMcaaiaa cYcacaaMe8UaaGjbVlaadMfadaqhaaWcbaGaaGymaaqaamaabmaaba GaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWc baGaaGinaaqabaGccaWGYbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0 IaamywamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaki aadkhaaiaawIcacaGLPaaacaGGSaaabaGaamywamaaDaaaleaacaaI WaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaai abeU7aSnaaBaaaleaacaaIZaaabeaakiaadkhaaiaawIcacaGLPaaa cqGH9aqpcaWGzbWaa0baaSqaaiaaicdaaeaadaqadaqaaiabeg7aHb GaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaaigda aeqaaOGaamOCaaGaayjkaiaawMcaaiaacYcacaaMe8UaaGjbVlaadM fadaqhaaWcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGinaaqabaGccaWGYb aacaGLOaGaayzkaaGaeyypa0JaamywamaaDaaaleaacaaIWaaabaWa aeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSn aaBaaaleaacaaIYaaabeaakiaadkhaaiaawIcacaGLPaaacaGGUaaa aaa@9862@

Поэтому общее решение задачи Штурма–Лиувилля (3.1) запишется так:

V r = l=1 2 V l J 1 α λ l r + V l Y 1 α λ l r , Φ r = l=1 2 Φ l J 0 α λ l r + Φ l Y 0 α λ l r . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaamOvam aabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da9maaqahabaWaamWa aeaacaWGwbWaa0baaSqaaiaadYgaaeaacqGHxiIkaaGccaWGkbWaa0 baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaa kmaabmaabaGaeq4UdW2aaSbaaSqaaiaadYgaaeqaaOGaamOCaaGaay jkaiaawMcaaiabgUcaRiaadAfadaqhaaWcbaGaamiBaaqaaiabgEHi QiabgEHiQaaakiaadMfadaqhaaWcbaGaaGymaaqaamaabmaabaGaeq ySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGa amiBaaqabaGccaWGYbaacaGLOaGaayzkaaaacaGLBbGaayzxaaaale aacaWGSbGaeyypa0JaaGymaaqaaiaaikdaa0GaeyyeIuoakiaacYca aeaacqqHMoGrdaqadaqaaiaadkhaaiaawIcacaGLPaaacqGH9aqpda aeWbqaamaadmaabaGaeuOPdy0aa0baaSqaaiaadYgaaeaacqGHxiIk aaGccaWGkbWaa0baaSqaaiaaicdaaeaadaqadaqaaiabeg7aHbGaay jkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaadYgaaeqa aOGaamOCaaGaayjkaiaawMcaaiabgUcaRiabfA6agnaaDaaaleaaca WGSbaabaGaey4fIOIaey4fIOcaaOGaamywamaaDaaaleaacaaIWaaa baWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU 7aSnaaBaaaleaacaWGSbaabeaakiaadkhaaiaawIcacaGLPaaaaiaa wUfacaGLDbaaaSqaaiaadYgacqGH9aqpcaaIXaaabaGaaGOmaaqdcq GHris5aOGaaiOlaaaaaa@8C78@  (3.5)

Оставшиеся постоянные V l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqhaa WcbaGaamiBaaqaaiabgEHiQaaaaaa@3B6A@ , V l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqhaa WcbaGaamiBaaqaaiabgEHiQiabgEHiQaaaaaa@3C59@ , Φ l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfA6agnaaDa aaleaacaWGSbaabaGaey4fIOcaaaaa@3C09@  и Φ l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfA6agnaaDa aaleaacaWGSbaabaGaey4fIOIaey4fIOcaaaaa@3CF8@  определяются из граничных условий, при этом с учетом равенств (3.3)

Φ l = V l ω l , Φ l = V l ω l , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfA6agnaaDa aaleaacaWGSbaabaGaey4fIOcaaOGaeyypa0JaamOvamaaDaaaleaa caWGSbaabaGaey4fIOcaaOGaeqyYdC3aaSbaaSqaaiaadYgaaeqaaO GaaiilaiaaywW7cqqHMoGrdaqhaaWcbaGaamiBaaqaaiabgEHiQiab gEHiQaaakiabg2da9iaadAfadaqhaaWcbaGaamiBaaqaaiabgEHiQi abgEHiQaaakiabeM8a3naaBaaaleaacaWGSbaabeaakiaacYcaaaa@5248@

где ω l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeM8a3naaBa aaleaacaWGSbaabeaaaaa@3B6C@  находятся по формулам (2.13).

Рассмотрим вначале случай, когда областью решения является круг радиуса R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkfaaaa@3959@ , 0rR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacqGHKj YOcaWGYbGaeyizImQaamOuaaaa@3E74@ . Функции Неймана не ограничены в нуле, поэтому константы V l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqhaa WcbaGaamiBaaqaaiabgEHiQiabgEHiQaaaaaa@3C59@  и Φ l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfA6agnaaDa aaleaacaWGSbaabaGaey4fIOIaey4fIOcaaaaa@3CF8@  следует положить равными нулю. Тогда

V r = l=1 2 V l J 1 α λ l r , Φ r = l=1 2 Φ l J 0 α λ l r . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOvam aabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da9maaqahabaGaamOv amaaDaaaleaacaWGSbaabaGaey4fIOcaaOGaamOsamaaDaaaleaaca aIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqa aiabeU7aSnaaBaaaleaacaWGSbaabeaakiaadkhaaiaawIcacaGLPa aaaSqaaiaadYgacqGH9aqpcaaIXaaabaGaaGOmaaqdcqGHris5aOGa aiilaaqaaiabfA6agnaabmaabaGaamOCaaGaayjkaiaawMcaaiabg2 da9maaqahabaGaeuOPdy0aa0baaSqaaiaadYgaaeaacqGHxiIkaaGc caWGkbWaa0baaSqaaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkai aawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaadYgaaeqaaOGa amOCaaGaayjkaiaawMcaaaWcbaGaamiBaiabg2da9iaaigdaaeaaca aIYaaaniabggHiLdGccaGGUaaaaaa@69CB@  (3.6)

Исходя из свойств производных цилиндрических и сферических функций Бесселя (см. [33], [36]),

J 0 α z = J 1 α z , J 0 α z =z J 1 α z +α J 1 α z , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOsam aaDaaaleaacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaa aaGcdaahaaWcbeqaaOGamai8gkdiIcaadaqadaqaaiaadQhaaiaawI cacaGLPaaacqGH9aqpcaWGkbWaa0baaSqaaiaaigdaaeaadaqadaqa aiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaamOEaaGaayjkai aawMcaaiaacYcaaeaacaWGkbWaa0baaSqaaiaaicdaaeaadaqadaqa aiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaamOEaaGaayjkai aawMcaaiabg2da9iaadQhacaWGkbWaa0baaSqaaiaaigdaaeaadaqa daqaaiabeg7aHbGaayjkaiaawMcaaaaakmaaCaaaleqabaGccWaGWB OmGikaamaabmaabaGaamOEaaGaayjkaiaawMcaaiabgUcaRiabeg7a HjaadQeadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOa GaayzkaaaaaOWaaeWaaeaacaWG6baacaGLOaGaayzkaaGaaiilaaaa aa@6B07@  (3.7)

параметр z может одновременно удовлетворять либо паре уравнений

J 1 α z =0, J 0 α z =0, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacaWG6baacaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcaca aMf8UaamOsamaaDaaaleaacaaIWaaabaWaaeWaaeaacqaHXoqyaiaa wIcacaGLPaaaaaGcdaahaaWcbeqaaOGamai8gkdiIcaadaqadaqaai aadQhaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaaaa@5100@

либо

J 0 α z =0,z J 1 α z +α J 1 α z =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacaWG6baacaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcaca aMf8UaamOEaiaadQeadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqyS degacaGLOaGaayzkaaaaaOWaaWbaaSqabeaakiadacVHYaIOaaWaae WaaeaacaWG6baacaGLOaGaayzkaaGaey4kaSIaeqySdeMaamOsamaa DaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaa GcdaqadaqaaiaadQhaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOl aaaa@5BF3@

Поэтому будем рассматривать граничные условия двух типов:

V R =0, Φ R =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiaadkfaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaaywW7 cuqHMoGrgaqbamaabmaabaGaamOuaaGaayjkaiaawMcaaiabg2da9i aaicdaaaa@4561@  (3.8)

или

Φ R =0, V R + αV R R ΛΦ R =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfA6agnaabm aabaGaamOuaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaGzb VlqadAfagaqbamaabmaabaGaamOuaaGaayjkaiaawMcaaiabgUcaRm aalaaabaGaeqySdeMaamOvamaabmaabaGaamOuaaGaayjkaiaawMca aaqaaiaadkfaaaGaeyOeI0Iaeu4MdWKaeuOPdy0aaeWaaeaacaWGsb aacaGLOaGaayzkaaGaeyypa0JaaGimaiaac6caaaa@52F2@  (3.9)

Подставляя (3.6) в (3.8), получаем

l=1 2 V l J 1 α λ l R =0, l=1 2 Φ l d J 0 α λ l r dr r=R = l=1 2 Φ l λ l J 1 α λ l R = l=1 2 γ 2 λ l 2 λ l Λ V l λ l J 1 α λ l R =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaabCae aacaWGwbWaa0baaSqaaiaadYgaaeaacqGHxiIkaaGccaWGkbWaa0ba aSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakm aabmaabaGaeq4UdW2aaSbaaSqaaiaadYgaaeqaaOGaamOuaaGaayjk aiaawMcaaaWcbaGaamiBaiabg2da9iaaigdaaeaacaaIYaaaniabgg HiLdGccqGH9aqpcaaIWaGaaiilaaqaamaaeiaabaWaaabCaeaacqqH MoGrdaqhaaWcbaGaamiBaaqaaiabgEHiQaaakmaalaaabaGaamizai aadQeadaqhaaWcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGa ayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamiBaaqabaGcca WGYbaacaGLOaGaayzkaaaabaGaamizaiaadkhaaaaaleaacaWGSbGa eyypa0JaaGymaaqaaiaaikdaa0GaeyyeIuoaaOGaayjcSdWaaSbaaS qaaiaadkhacqGH9aqpcaWGsbaabeaakiabg2da9iabgkHiTmaaqaha baGaeuOPdy0aa0baaSqaaiaadYgaaeaacqGHxiIkaaGccqaH7oaBda WgaaWcbaGaamiBaaqabaGccaWGkbWaa0baaSqaaiaaigdaaeaadaqa daqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaS baaSqaaiaadYgaaeqaaOGaamOuaaGaayjkaiaawMcaaaWcbaGaamiB aiabg2da9iaaigdaaeaacaaIYaaaniabggHiLdGccqGH9aqpdaaeWb qaamaalaaabaGaeq4SdC2aaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ia eq4UdW2aa0baaSqaaiaadYgaaeaacaaIYaaaaaGcbaGaeq4UdW2aaS baaSqaaiaadYgaaeqaaOGaeu4MdWeaaiaadAfadaqhaaWcbaGaamiB aaqaaiabgEHiQaaakiabeU7aSnaaBaaaleaacaWGSbaabeaakiaadQ eadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamiBaaqabaGccaWGsb aacaGLOaGaayzkaaaaleaacaWGSbGaeyypa0JaaGymaaqaaiaaikda a0GaeyyeIuoakiabg2da9iaaicdacaGGUaaaaaa@A5B0@

Определитель этой системы равен

J 1 α λ 1 R J 1 α λ 2 R γ 2 λ 1 2 J 1 α λ 1 R γ 2 λ 2 2 J 1 α λ 2 R = = γ 2 λ 2 2 γ 2 + λ 1 2 J 1 α λ 1 R J 1 α λ 2 R = = λ 1 2 λ 2 2 J 1 α λ 1 R J 1 α λ 2 R . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqWaae aafaqabeGacaaabaGaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaa cqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaale aacaaIXaaabeaakiaadkfaaiaawIcacaGLPaaaaeaacaWGkbWaa0ba aSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakm aabmaabaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaamOuaaGaayjk aiaawMcaaaqaamaabmaabaGaeq4SdC2aaWbaaSqabeaacaaIYaaaaO GaeyOeI0Iaeq4UdW2aa0baaSqaaiaaigdaaeaacaaIYaaaaaGccaGL OaGaayzkaaGaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXo qyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaI XaaabeaakiaadkfaaiaawIcacaGLPaaaaeaadaqadaqaaiabeo7aNn aaCaaaleqabaGaaGOmaaaakiabgkHiTiabeU7aSnaaDaaaleaacaaI YaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadQeadaqhaaWcbaGaaG ymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaa cqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccaWGsbaacaGLOaGaayzkaa aaaaGaay5bSlaawIa7aiabg2da9aqaaiabg2da9maabmaabaGaeq4S dC2aaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaeq4UdW2aa0baaSqaai aaikdaaeaacaaIYaaaaOGaeyOeI0Iaeq4SdC2aaWbaaSqabeaacaaI YaaaaOGaey4kaSIaeq4UdW2aa0baaSqaaiaaigdaaeaacaaIYaaaaa GccaGLOaGaayzkaaGaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaa cqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaale aacaaIXaaabeaakiaadkfaaiaawIcacaGLPaaacaWGkbWaa0baaSqa aiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabm aabaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaamOuaaGaayjkaiaa wMcaaiabg2da9aqaaiabg2da9maabmaabaGaeq4UdW2aa0baaSqaai aaigdaaeaacaaIYaaaaOGaeyOeI0Iaeq4UdW2aa0baaSqaaiaaikda aeaacaaIYaaaaaGccaGLOaGaayzkaaGaamOsamaaDaaaleaacaaIXa aabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiab eU7aSnaaBaaaleaacaaIXaaabeaakiaadkfaaiaawIcacaGLPaaaca WGkbWaa0baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaa wMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaam OuaaGaayjkaiaawMcaaiaac6caaaaa@BA58@  (3.10)

Приравнивая определитель нулю, получаем

J 1 α λ 1 R =0 V 2 =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaWGsbaacaGLOa GaayzkaaGaeyypa0JaaGimaiaaywW7cqGHshI3caaMf8UaamOvamaa DaaaleaacaaIYaaabaGaey4fIOcaaOGaeyypa0JaaGimaiaacYcaaa a@4ED5@

или

J 1 α λ 2 R =0 V 1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccaWGsbaacaGLOa GaayzkaaGaeyypa0JaaGimaiaaywW7cqGHshI3caaMf8UaamOvamaa DaaaleaacaaIXaaabaGaey4fIOcaaOGaeyypa0JaaGimaiaac6caaa a@4ED7@

Эти равенства эквиваленты. Поэтому, ограничиваясь одним из двух вышеперечисленных вариантов, получаем

V r = n=1 v n J 1 α λ n r ,Φ r = n=1 φ n J 0 α λ n r , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiaadkhaaiaawIcacaGLPaaacqGH9aqpdaaeWbqaaiaadAhadaWg aaWcbaGaamOBaaqabaGccaWGkbWaa0baaSqaaiaaigdaaeaadaqada qaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawMcaaaWcbaGaamOBai abg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoakiaacYcacaaMf8Ua euOPdy0aaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0ZaaabCae aacqaHgpGAdaWgaaWcbaGaamOBaaqabaGccaWGkbWaa0baaSqaaiaa icdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaaba Gaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawMca aaWcbaGaamOBaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoaki aacYcaaaa@6B48@  (3.11)

где λ n n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaakiaaysW7daqadaqaaiaad6gacqGHiiIZcqWI vesPaiaawIcacaGLPaaaaaa@4258@  – параметр, удовлетворяющий одновременно двум уравнениям:

J 1 α λ n R =0, J 0 α λ n R =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsbaacaGLOa GaayzkaaGaeyypa0JaaGimaiaacYcacaaMf8UaamOsamaaDaaaleaa caaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaahaa WcbeqaaOGamai8gkdiIcaadaqadaqaaiabeU7aSnaaBaaaleaacaWG UbaabeaakiaadkfaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOlaa aa@566C@  (3.12)

Аналогичным образом для граничных условий (3.9) получаем решение в виде (3.11), где λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  является корнем уравнений

J 0 α λ n R =0, λ n R J 1 α λ n R +α J 1 α λ n R =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsbaacaGLOa GaayzkaaGaeyypa0JaaGimaiaacYcacaaMf8Uaeq4UdW2aaSbaaSqa aiaad6gaaeqaaOGaamOuaiaadQeadaqhaaWcbaGaaGymaaqaamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaOWaaWbaaSqabeaakiadacVH YaIOaaWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsb aacaGLOaGaayzkaaGaey4kaSIaeqySdeMaamOsamaaDaaaleaacaaI XaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaai abeU7aSnaaBaaaleaacaWGUbaabeaakiaadkfaaiaawIcacaGLPaaa cqGH9aqpcaaIWaGaaiOlaaaa@66C7@  (3.13)

Перейдем теперь к построению собственных функций для кольца R 1 r R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkfadaWgaa WcbaGaaGymaaqabaGccqGHKjYOcaWGYbGaeyizImQaamOuamaaBaaa leaacaaIYaaabeaaaaa@406A@ . Здесь возможны следующие варианты граничных условий:

V R 2 =0, Φ R 2 =0,V R 1 =0, Φ R 1 =0; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiaadkfadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH 9aqpcaaIWaGaaiilaiaaywW7cuqHMoGrgaqbamaabmaabaGaamOuam aaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabg2da9iaaicda caGGSaGaaGzbVlaadAfadaqadaqaaiaadkfadaWgaaWcbaGaaGymaa qabaaakiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaaywW7cuqH MoGrgaqbamaabmaabaGaamOuamaaBaaaleaacaaIXaaabeaaaOGaay jkaiaawMcaaiabg2da9iaaicdacaGG7aaaaa@5903@  (3.14)

Φ R 2 =0, V R 2 + αV R 2 R 2 ΛΦ R 2 =0, Φ R 1 =0, V R 1 + αV R 1 R 1 ΛΦ R 1 =0; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaeuOPdy 0aaeWaaeaacaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaGaeyypa0JaaGimaiaacYcacaaMf8UabmOvayaafaWaaeWaaeaaca WGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSYa aSaaaeaacqaHXoqycaWGwbWaaeWaaeaacaWGsbWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaaabaGaamOuamaaBaaaleaacaaIYaaa beaaaaGccqGHsislcqqHBoatcqqHMoGrdaqadaqaaiaadkfadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiil aaqaaiabfA6agnaabmaabaGaamOuamaaBaaaleaacaaIXaaabeaaaO GaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaGzbVlqadAfagaqb amaabmaabaGaamOuamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawM caaiabgUcaRmaalaaabaGaeqySdeMaamOvamaabmaabaGaamOuamaa BaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaqaaiaadkfadaWgaa WcbaGaaGymaaqabaaaaOGaeyOeI0Iaeu4MdWKaeuOPdy0aaeWaaeaa caWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyypa0 JaaGimaiaacUdaaaaa@76E3@  (3.15)

Φ R 2 =0, V R 2 + αV R 2 R 2 ΛΦ R 2 =0, V R 1 =0, Φ R 1 =0; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaeuOPdy 0aaeWaaeaacaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaGaeyypa0JaaGimaiaacYcacaaMf8UabmOvayaafaWaaeWaaeaaca WGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSYa aSaaaeaacqaHXoqycaWGwbWaaeWaaeaacaWGsbWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaaabaGaamOuamaaBaaaleaacaaIYaaa beaaaaGccqGHsislcqqHBoatcqqHMoGrdaqadaqaaiaadkfadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiil aaqaaiaadAfadaqadaqaaiaadkfadaWgaaWcbaGaaGymaaqabaaaki aawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaaywW7cuqHMoGrgaqb amaabmaabaGaamOuamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawM caaiabg2da9iaaicdacaGG7aaaaaa@6731@  (3.16)

Φ R 1 =0, V R 1 + αV R 1 R 1 ΛΦ R 1 =0, V R 2 =0, Φ R 2 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaeuOPdy 0aaeWaaeaacaWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaeyypa0JaaGimaiaacYcacaaMf8UabmOvayaafaWaaeWaaeaaca WGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSYa aSaaaeaacqaHXoqycaWGwbWaaeWaaeaacaWGsbWaaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaaabaGaamOuamaaBaaaleaacaaIXaaa beaaaaGccqGHsislcqqHBoatcqqHMoGrdaqadaqaaiaadkfadaWgaa WcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiil aaqaaiaadAfadaqadaqaaiaadkfadaWgaaWcbaGaaGOmaaqabaaaki aawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaaywW7cuqHMoGrgaqb amaabmaabaGaamOuamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawM caaiabg2da9iaaicdacaGGUaaaaaa@6721@  (3.17)

Подставляя (3.5) в (3.14), получаем следующую систему линейных алгебраических уравнений:

l=1 2 V l J 1 α λ l R 2 + V l Y 1 α λ l R 2 =0, l=1 2 δ l V l J 1 α λ l R 2 + V l Y 1 α λ l R 2 =0, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaabCae aadaWadaqaaiaadAfadaqhaaWcbaGaamiBaaqaaiabgEHiQaaakiaa dQeadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaay zkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamiBaaqabaGccaWG sbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaam OvamaaDaaaleaacaWGSbaabaGaey4fIOIaey4fIOcaaOGaamywamaa DaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaa GcdaqadaqaaiabeU7aSnaaBaaaleaacaWGSbaabeaakiaadkfadaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaS qaaiaadYgacqGH9aqpcaaIXaaabaGaaGOmaaqdcqGHris5aOGaeyyp a0JaaGimaiaacYcaaeaadaaeWbqaaiabes7aKnaaBaaaleaacaWGSb aabeaakmaadmaabaGaamOvamaaDaaaleaacaWGSbaabaGaey4fIOca aOGaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawI cacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGSbaabeaa kiaadkfadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRa WkcaWGwbWaa0baaSqaaiaadYgaaeaacqGHxiIkcqGHxiIkaaGccaWG zbWaa0baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawM caaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaadYgaaeqaaOGaamOu amaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2 faaaWcbaGaamiBaiabg2da9iaaigdaaeaacaaIYaaaniabggHiLdGc cqGH9aqpcaaIWaGaaiilaaaaaa@8B6E@

l=1 2 V l J 1 α λ l R 1 + V l Y 1 α λ l R 1 =0, l=1 2 δ l V l J 1 α λ l R 1 + V l Y 1 α λ l R 1 =0, δ l = γ 2 λ l 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaabCae aadaWadaqaaiaadAfadaqhaaWcbaGaamiBaaqaaiabgEHiQaaakiaa dQeadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaay zkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamiBaaqabaGccaWG sbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaam OvamaaDaaaleaacaWGSbaabaGaey4fIOIaey4fIOcaaOGaamywamaa DaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaa GcdaqadaqaaiabeU7aSnaaBaaaleaacaWGSbaabeaakiaadkfadaWg aaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaS qaaiaadYgacqGH9aqpcaaIXaaabaGaaGOmaaqdcqGHris5aOGaeyyp a0JaaGimaiaacYcaaeaadaaeWbqaaiabes7aKnaaBaaaleaacaWGSb aabeaakmaadmaabaGaamOvamaaDaaaleaacaWGSbaabaGaey4fIOca aOGaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawI cacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGSbaabeaa kiaadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRa WkcaWGwbWaa0baaSqaaiaadYgaaeaacqGHxiIkcqGHxiIkaaGccaWG zbWaa0baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawM caaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaadYgaaeqaaOGaamOu amaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2 faaaWcbaGaamiBaiabg2da9iaaigdaaeaacaaIYaaaniabggHiLdGc cqGH9aqpcaaIWaGaaiilaaqaaiabes7aKnaaBaaaleaacaWGSbaabe aakiabg2da9iabeo7aNnaaCaaaleqabaGaaGOmaaaakiabgkHiTiab eU7aSnaaDaaaleaacaWGSbaabaGaaGOmaaaakiaac6caaaaa@970E@

Запишем матрицу этой системы:

J 1 α λ 1 R 2 J 1 α λ 2 R 2 Y 1 α λ 1 R 2 Y 1 α λ 2 R 2 δ 1 J 1 α λ 1 R 2 δ 2 J 1 α λ 2 R 2 δ 1 Y 1 λ 1 R 2 δ 2 Y 1 α λ 2 R 2 J 1 α λ 1 R 1 J 1 α λ 2 R 1 Y 1 α λ 1 R 1 Y 1 α λ 2 R 1 δ 1 J 1 α λ 1 R 1 δ 2 J 1 α λ 2 R 1 δ 1 Y 1 α λ 1 R 1 δ 2 Y 1 α λ 2 R 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaqbae qabqabaaaaaeaacaWGkbWaa0baaSqaaiaaigdaaeaadaqadaqaaiab eg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaai aaigdaaeqaaOGaamOuamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaa wMcaaaqaaiaadQeadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySde gacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGOm aaqabaGccaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaa aabaGaamywamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaa wIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIXaaabe aakiaadkfadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaa caWGzbWaa0baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkai aawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGa amOuamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaaiabes 7aKnaaBaaaleaacaaIXaaabeaakiaadQeadaqhaaWcbaGaaGymaaqa amaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7o aBdaWgaaWcbaGaaGymaaqabaGccaWGsbWaaSbaaSqaaiaaikdaaeqa aaGccaGLOaGaayzkaaaabaGaeqiTdq2aaSbaaSqaaiaaikdaaeqaaO GaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaki aadkfadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaacqaH 0oazdaWgaaWcbaGaaGymaaqabaGccaWGzbWaaSbaaSqaaiaaigdaae qaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaWGsbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaGaeqiTdq2aaS baaSqaaiaaikdaaeqaaOGaamywamaaDaaaleaacaaIXaaabaWaaeWa aeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBa aaleaacaaIYaaabeaakiaadkfadaWgaaWcbaGaaGOmaaqabaaakiaa wIcacaGLPaaaaeaacaWGkbWaa0baaSqaaiaaigdaaeaadaqadaqaai abeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqa aiaaigdaaeqaaOGaamOuamaaBaaaleaacaaIXaaabeaaaOGaayjkai aawMcaaaqaaiaadQeadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqyS degacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaG OmaaqabaGccaWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaaabaGaamywamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyai aawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIXaaa beaakiaadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaae aacaWGzbWaa0baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjk aiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaO GaamOuamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaqaaiab es7aKnaaBaaaleaacaaIXaaabeaakiaadQeadaqhaaWcbaGaaGymaa qaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH 7oaBdaWgaaWcbaGaaGymaaqabaGccaWGsbWaaSbaaSqaaiaaigdaae qaaaGccaGLOaGaayzkaaaabaGaeqiTdq2aaSbaaSqaaiaaikdaaeqa aOGaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawI cacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIYaaabeaa kiaadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaeaacq aH0oazdaWgaaWcbaGaaGymaaqabaGccaWGzbWaa0baaSqaaiaaigda aeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq 4UdW2aaSbaaSqaaiaaigdaaeqaaOGaamOuamaaBaaaleaacaaIXaaa beaaaOGaayjkaiaawMcaaaqaaiabes7aKnaaBaaaleaacaaIYaaabe aakiaadMfadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGL OaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGOmaaqaba GccaWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaaGa ayjkaiaawMcaaiaac6caaaa@FAE0@

С помощью элементарных преобразований она приводится к виду

1 0 0 0 0 1 0 Y 1 α λ 2 R 2 J 1 α λ 2 R 2 0 0 1 0 0 0 0 Y 1 α λ 2 R 1 J 1 α λ 2 R 1 Y 1 α λ 2 R 2 J 1 α λ 2 R 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaqbae qabqabaaaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaigdaaeaacaaIWaaabaWaaSaaaeaacaWGzbWaa0 baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaa kmaabmaabaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaamOuamaaBa aaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaaiaadQeadaqhaaWc baGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaae WaaeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccaWGsbWaaSbaaSqa aiaaikdaaeqaaaGccaGLOaGaayzkaaaaaaqaaiaaicdaaeaacaaIWa aabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaadaWcaaqaaiaadMfadaqhaaWcbaGaaGymaaqaamaabmaabaGaeq ySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGa aGOmaaqabaGccaWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaay zkaaaabaGaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqy aiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIYa aabeaakiaadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaa aaGaeyOeI0YaaSaaaeaacaWGzbWaa0baaSqaaiaaigdaaeaadaqada qaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSba aSqaaiaaikdaaeqaaOGaamOuamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaaqaaiaadQeadaqhaaWcbaGaaGymaaqaamaabmaabaGa eqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcba GaaGOmaaqabaGccaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGa ayzkaaaaaaaaaiaawIcacaGLPaaacaGGUaaaaa@879A@

Отсюда следует, что необходимым условием существования ненулевого решения является выполнение следующего равенства:

J 1 α λ 2 R 2 Y 1 α λ 2 R 1 Y 1 α λ 2 R 2 J 1 α λ 2 R 1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccaWGsbWaaSbaaS qaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamywamaaDaaaleaacaaI XaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaai abeU7aSnaaBaaaleaacaaIYaaabeaakiaadkfadaWgaaWcbaGaaGym aaqabaaakiaawIcacaGLPaaacqGHsislcaaMe8UaamywamaaDaaale aacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqa daqaaiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadkfadaWgaaWcba GaaGOmaaqabaaakiaawIcacaGLPaaacaWGkbWaa0baaSqaaiaaigda aeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq 4UdW2aaSbaaSqaaiaaikdaaeqaaOGaamOuamaaBaaaleaacaaIXaaa beaaaOGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaaaaa@690E@

При этом V 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqhaa WcbaGaaGymaaqaaiabgEHiQaaakiabg2da9iaaicdaaaa@3CFE@  и V 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqhaa WcbaGaaGymaaqaaiabgEHiQiabgEHiQaaakiabg2da9iaaicdaaaa@3DED@ . Для остальных постоянных получаем

V 2 = Y 1 α λ 2 R 2 J 1 α λ 2 R 2 V 2 , V 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqhaa WcbaGaaGOmaaqaaiabgEHiQaaakiabg2da9iabgkHiTmaalaaabaGa amywamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcaca GLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIYaaabeaakiaa dkfadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaacaWGkb Waa0baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMca aaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaamOuam aaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaacaWGwbWaa0ba aSqaaiaaikdaaeaacqGHxiIkcqGHxiIkaaGccaGGSaGaaGzbVlaadA fadaqhaaWcbaGaaGOmaaqaaiabgEHiQiabgEHiQaaakiabgIGiolab l2riHkaac6caaaa@604F@

Таким образом, приходим к следующему решению:

V r = n=1 v n Ψ 11 α λ n r ,Φ r = n=1 φ n Ψ 10 α λ n r , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiaadkhaaiaawIcacaGLPaaacqGH9aqpdaaeWbqaaiaadAhadaWg aaWcbaGaamOBaaqabaGccqqHOoqwdaqhaaWcbaGaaGymaiaaigdaae aadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4U dW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawMcaaaWcba GaamOBaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoakiaacYca caaMe8UaaGjbVlabfA6agnaabmaabaGaamOCaaGaayjkaiaawMcaai abg2da9maaqahabaGaeqOXdO2aaSbaaSqaaiaad6gaaeqaaOGaeuiQ dK1aa0baaSqaaiaaigdacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawI cacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaa kiaadkhaaiaawIcacaGLPaaaaSqaaiaad6gacqGH9aqpcaaIXaaaba GaeyOhIukaniabggHiLdGccaGGSaaaaa@6FCA@  (3.18)

Ψ 11 α λ n r = Y 1 α λ n R 2 J 1 α λ n r J 1 α λ n R 2 Y 1 α λ n r , Ψ 10 α λ n r = Y 1 α λ n R 2 J 0 α λ n r J 1 α λ n R 2 Y 0 α λ n r , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeuiQdK 1aa0baaSqaaiaaigdacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaki aadkhaaiaawIcacaGLPaaacqGH9aqpcaWGzbWaa0baaSqaaiaaigda aeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq 4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaaiaadQeadaqhaaWcbaGaaGymaaqaamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWg aaWcbaGaamOBaaqabaGccaWGYbaacaGLOaGaayzkaaGaeyOeI0IaaG jbVlaadQeadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGL OaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqaba GccaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamyw amaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPa aaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkha aiaawIcacaGLPaaacaGGSaaabaGaeuiQdK1aa0baaSqaaiaaigdaca aIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqa aiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkhaaiaawIcacaGLPa aacqGH9aqpcaWGzbWaa0baaSqaaiaaigdaaeaadaqadaqaaiabeg7a HbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6 gaaeqaaOGaamOuamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMca aiaadQeadaqhaaWcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOa GaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGc caWGYbaacaGLOaGaayzkaaGaeyOeI0IaaGjbVlaadQeadaqhaaWcba GaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWa aeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsbWaaSbaaSqaai aaikdaaeqaaaGccaGLOaGaayzkaaGaamywamaaDaaaleaacaaIWaaa baWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaadkhaaiaawIcacaGLPaaacaGG Saaaaaa@AE1D@  (3.19)

где λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  удовлетворяет уравнению

Ψ 11 α λ n R 1 = J 1 α λ n R 2 Y 1 α λ n R 1 Y 1 α λ n R 2 J 1 α λ n R 1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeuiQdK 1aa0baaSqaaiaaigdacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaki aadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqp caWGkbWaa0baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkai aawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGa amOuamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaadMfada qhaaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaa aOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsbWaaS baaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0cabaGaeyOe I0IaaGjbVlaadMfadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySde gacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOB aaqabaGccaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaa GaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaki aadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqp caaIWaGaaiOlaaaaaa@7877@  (3.20)

В остальных случаях по аналогии получаем:

– Для граничных условий (3.15)

V r = n=1 v n Ψ 01 α λ n r , Φ r = n=1 φ n Ψ 01 α λ n r , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOvam aabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da9maaqahabaGaamOD amaaBaaaleaacaWGUbaabeaakiabfI6aznaaDaaaleaacaaIWaGaaG ymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaa cqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGYbaacaGLOaGaayzkaa aaleaacaWGUbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5aOGa aiilaaqaaiabfA6agnaabmaabaGaamOCaaGaayjkaiaawMcaaiabg2 da9maaqahabaGaeqOXdO2aaSbaaSqaaiaad6gaaeqaaOGaeuiQdK1a a0baaSqaaiaaicdacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcaca GLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaa dkhaaiaawIcacaGLPaaaaSqaaiaad6gacqGH9aqpcaaIXaaabaGaey OhIukaniabggHiLdGccaGGSaaaaaa@6CB7@  (3.21)

Ψ 01 α λ n r = Y 0 α λ n R 2 J 1 α λ n r J 0 α λ n R 2 Y 1 α λ n r , Ψ 00 α λ n r = Y 0 α λ n R 2 J 0 α λ n r J 0 α λ n R 2 Y 0 α λ n r . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeuiQdK 1aa0baaSqaaiaaicdacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaki aadkhaaiaawIcacaGLPaaacqGH9aqpcaWGzbWaa0baaSqaaiaaicda aeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq 4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaaiaadQeadaqhaaWcbaGaaGymaaqaamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWg aaWcbaGaamOBaaqabaGccaWGYbaacaGLOaGaayzkaaGaeyOeI0caba GaeyOeI0IaaGjbVlaadQeadaqhaaWcbaGaaGimaaqaamaabmaabaGa eqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcba GaamOBaaqabaGccaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGa ayzkaaGaamywamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyai aawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaa beaakiaadkhaaiaawIcacaGLPaaacaGGSaaabaGaeuiQdK1aa0baaS qaaiaaicdacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaa aaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkhaai aawIcacaGLPaaacqGH9aqpcaWGzbWaa0baaSqaaiaaicdaaeaadaqa daqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIYaaabeaaaOGa ayjkaiaawMcaaiaadQeadaqhaaWcbaGaaGimaaqaamaabmaabaGaeq ySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGa amOBaaqabaGccaWGYbaacaGLOaGaayzkaaGaeyOeI0cabaGaeyOeI0 IaaGjbVlaadQeadaqhaaWcbaGaaGimaaqaamaabmaabaGaeqySdega caGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaa qabaGccaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGa amywamaaDaaaleaacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcaca GLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaa dkhaaiaawIcacaGLPaaacaGGUaaaaaa@AFF5@  (3.22)

Здесь λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  – корень уравнений

Ψ 00 α λ n R 1 = J 0 α λ n R 2 Y 0 α λ n R 1 Y 0 α λ n R 2 J 0 α λ n R 1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeuiQdK 1aa0baaSqaaiaaicdacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaki aadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqp caWGkbWaa0baaSqaaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkai aawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGa amOuamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaadMfada qhaaWcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaa aOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsbWaaS baaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0cabaGaeyOe I0IaaGjbVlaadMfadaqhaaWcbaGaaGimaaqaamaabmaabaGaeqySde gacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOB aaqabaGccaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaa GaamOsamaaDaaaleaacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaki aadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqp caaIWaGaaiOlaaaaaa@7871@  (3.23)

– Для граничных условий (3.16) решение имеет вид (3.18), а λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  является корнем уравнения

Ψ 01 α λ n R 1 = Y 1 α λ n R 1 J 0 α λ n R 2 J 1 α λ n R 1 Y 0 α λ n R 2 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeuiQdK 1aa0baaSqaaiaaicdacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaki aadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqp caWGzbWaa0baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkai aawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGa amOuamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaadQeada qhaaWcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaa aOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0cabaGaeyOe I0IaaGjbVlaadQeadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySde gacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOB aaqabaGccaWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaa GaamywamaaDaaaleaacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaki aadkfadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqp caaIWaGaaiOlaaaaaa@7874@  (3.24)

– Для граничных условий (3.17) решение имеет вид (3.21), а λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  удовлетворяют уравнению

Ψ 10 α λ n R 1 = J 0 α λ n R 1 Y 1 α λ n R 2 Y 0 α λ n R 1 J 1 α λ n R 2 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeuiQdK 1aa0baaSqaaiaaigdacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaki aadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqp caWGkbWaa0baaSqaaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkai aawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGa amOuamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaadMfada qhaaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaa aOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0cabaGaeyOe I0IaaGjbVlaadMfadaqhaaWcbaGaaGimaaqaamaabmaabaGaeqySde gacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOB aaqabaGccaWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaa GaamOsamaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaki aadkfadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqp caaIWaGaaiOlaaaaaa@7874@  (3.25)

Как и для задач в прямоугольной декартовой системе координат, получить решение задачи Штурма–Лиувилля при условиях, отличных (3.8) (3.9), (3.14)–(3.17), не представляется возможным.

4. ПРЕДСТАВЛЕНИЕ РЕШЕНИЙ КРАЕВЫХ ЗАДАЧ В ВИДЕ РЯДОВ ПО СОБСТВЕННЫМ ФУНКЦИЯМ

В соответствии с результатами, полученными в предыдущем разделе, рассмотрим ряды ( α=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabg2 da9iaaigdacaGGSaGaaGOmaaaa@3D4E@  )

f r = n=1 f n Ψ kl α λ n r , f n = 1 Ψ kl α λ n r 2 R 1 R 1 r α f r Ψ kl α λ n r dr , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamOzam aabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da9maaqahabaGaamOz amaaBaaaleaacaWGUbaabeaakiabfI6aznaaDaaaleaacaWGRbGaam iBaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaa cqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGYbaacaGLOaGaayzkaa aaleaacaWGUbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5aOGa aiilaaqaaiaadAgadaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWcaa qaaiaaigdaaeaadaqbdaqaaiabfI6aznaaDaaaleaacaWGRbGaamiB aaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacq aH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGYbaacaGLOaGaayzkaaaa caGLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaaaakmaapehabaGaam OCamaaCaaaleqabaGaeqySdegaaOGaamOzamaabmaabaGaamOCaaGa ayjkaiaawMcaaiabfI6aznaaDaaaleaacaWGRbGaamiBaaqaamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWg aaWcbaGaamOBaaqabaGccaWGYbaacaGLOaGaayzkaaGaamizaiaadk haaSqaaiaadkfadaWgaaadbaGaaGymaaqabaaaleaacaWGsbWaaSba aWqaaiaaigdaaeqaaaqdcqGHRiI8aOGaaiilaaaaaa@8177@  (4.1)

где величины Ψ kl α λ n r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaafmaabaGaeu iQdK1aa0baaSqaaiaadUgacaWGSbaabaWaaeWaaeaacqaHXoqyaiaa wIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabe aakiaadkhaaiaawIcacaGLPaaaaiaawMa7caGLkWoadaahaaWcbeqa aiaaikdaaaaaaa@48BD@  определяются так:

Ψ kl α λ n r 2 = R 1 1 r α Ψ kl α λ n r Ψ kl α λ n r dr . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaafmaabaGaeu iQdK1aa0baaSqaaiaadUgacaWGSbaabaWaaeWaaeaacqaHXoqyaiaa wIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabe aakiaadkhaaiaawIcacaGLPaaaaiaawMa7caGLkWoadaahaaWcbeqa aiaaikdaaaGccqGH9aqpdaWdXbqaaiaadkhadaahaaWcbeqaaiabeg 7aHbaakiabfI6aznaaDaaaleaacaWGRbGaamiBaaqaamaabmaabaGa eqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcba GaamOBaaqabaGccaWGYbaacaGLOaGaayzkaaGaeuiQdK1aa0baaSqa aiaadUgacaWGSbaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaa GcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkhaaiaa wIcacaGLPaaacaWGKbGaamOCaaWcbaGaamOuamaaBaaameaacaaIXa aabeaaaSqaaiaaigdaa0Gaey4kIipakiaac6caaaa@6C7C@

Используя известное равенство (см. [33], [36])

z α Z ν λz S ν μz dz = = μ z α Z ν λz S ν1 μz λ z α Z ν1 λz S ν μz λ 2 μ 2 , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qaae aacaWG6bWaaWbaaSqabeaacqaHXoqyaaGccaWGAbWaaSbaaSqaaiab e27aUbqabaGcdaqadaqaaiabeU7aSjaadQhaaiaawIcacaGLPaaaca WGtbWaaSbaaSqaaiabe27aUbqabaGcdaqadaqaaiabeY7aTjaadQha aiaawIcacaGLPaaacaWGKbGaamOEaaWcbeqab0Gaey4kIipakiabg2 da9aqaaiabg2da9maalaaabaGaeqiVd0MaamOEamaaCaaaleqabaGa eqySdegaaOGaamOwamaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaacq aH7oaBcaWG6baacaGLOaGaayzkaaGaam4uamaaBaaaleaacqaH9oGB cqGHsislcaaIXaaabeaakmaabmaabaGaeqiVd0MaamOEaaGaayjkai aawMcaaiabgkHiTiabeU7aSjaadQhadaahaaWcbeqaaiabeg7aHbaa kiaadQfadaWgaaWcbaGaeqyVd4MaeyOeI0IaaGymaaqabaGcdaqada qaaiabeU7aSjaadQhaaiaawIcacaGLPaaacaWGtbWaaSbaaSqaaiab e27aUbqabaGcdaqadaqaaiabeY7aTjaadQhaaiaawIcacaGLPaaaae aacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccqGHsislcqaH8oqBdaah aaWcbeqaaiaaikdaaaaaaOGaaiilaaaaaa@7FCD@

где в качестве Z ν MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfadaWgaa WcbaGaeqyVd4gabeaaaaa@3B45@  и S ν MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadofadaWgaa WcbaGaeqyVd4gabeaaaaa@3B3E@  выступает любая из функций J ν α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaeqyVd4gabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaaa aa@3E5E@  или Y ν α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfadaqhaa WcbaGaeqyVd4gabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaaa aa@3E6D@ , а λ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSbaa@3A36@  и μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTbaa@3A38@  – произвольные числа, нетрудно получить аналогичное соотношение для введенных в предыдущем разделе функций Ψ kl α λ n r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaWGRbGaamiBaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGYb aacaGLOaGaayzkaaaaaa@44AE@ :

r α Ψ kl α λr Ψ kl α μr dr = = μ r α Ψ kl α λr Ψ k,l1 α μr λ r α Ψ k,l1 α λr Ψ kl α μr λ 2 μ 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qaae aacaWGYbWaaWbaaSqabeaacqaHXoqyaaGccqqHOoqwdaqhaaWcbaGa am4AaiaadYgaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakm aabmaabaGaeq4UdWMaamOCaaGaayjkaiaawMcaaiabfI6aznaaDaaa leaacaWGRbGaamiBaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaa aaaOWaaeWaaeaacqaH8oqBcaWGYbaacaGLOaGaayzkaaGaamizaiaa dkhaaSqabeqaniabgUIiYdGccqGH9aqpaeaacqGH9aqpdaWcaaqaai abeY7aTjaadkhadaahaaWcbeqaaiabeg7aHbaakiabfI6aznaaDaaa leaacaWGRbGaamiBaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaa aaaOWaaeWaaeaacqaH7oaBcaWGYbaacaGLOaGaayzkaaGaeuiQdK1a a0baaSqaaiaadUgacaGGSaGaamiBaiabgkHiTiaaigdaaeaadaqada qaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeqiVd0MaamOC aaGaayjkaiaawMcaaiabgkHiTiabeU7aSjaadkhadaahaaWcbeqaai abeg7aHbaakiabfI6aznaaDaaaleaacaWGRbGaaiilaiaadYgacqGH sislcaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcda qadaqaaiabeU7aSjaadkhaaiaawIcacaGLPaaacqqHOoqwdaqhaaWc baGaam4AaiaadYgaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaa aakmaabmaabaGaeqiVd0MaamOCaaGaayjkaiaawMcaaaqaaiabeU7a SnaaCaaaleqabaGaaGOmaaaakiabgkHiTiabeY7aTnaaCaaaleqaba GaaGOmaaaaaaGccaGGUaaaaaa@98FF@  (4.2)

Пусть число λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSbaa@3A35@  удовлетворяет уравнению (3.20), т.е. Ψ 11 α λ R 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIXaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBcaWGsbWaaSbaaSqaaiaaigdaaeqaaa GccaGLOaGaayzkaaGaeyypa0JaaGimaaaa@45AB@  (граничные условия (3.14)). В этом случае из (3.20) следует, что Ψ 11 α λ R 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIXaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBcaWGsbWaaSbaaSqaaiaaikdaaeqaaa GccaGLOaGaayzkaaGaeyypa0JaaGimaaaa@45AC@ . Тогда, используя равенство (4.2) и следуя [33], имеем

R 1 R 2 r α Ψ 11 α λr Ψ 11 α μr dr = = R 2 α μ Ψ 11 α λ R 2 Ψ 10 α μ R 2 λ Ψ 10 α λ R 2 Ψ 11 α μ R 2 λ 2 μ 2 R 1 α μ Ψ 11 α λ R 1 Ψ 10 α μ R 1 λ Ψ 10 α λ R 1 Ψ 11 α μ R 1 λ 2 μ 2 = = λ R 2 α Ψ 10 α λ R 2 Ψ 11 α μ R 2 λ R 1 α Ψ 10 α λ R 1 Ψ 11 α μ R 1 μ 2 λ 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae aacaWGYbWaaWbaaSqabeaacqaHXoqyaaGccqqHOoqwdaqhaaWcbaGa aGymaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakm aabmaabaGaeq4UdWMaamOCaaGaayjkaiaawMcaaiabfI6aznaaDaaa leaacaaIXaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaa aaaOWaaeWaaeaacqaH8oqBcaWGYbaacaGLOaGaayzkaaGaamizaiaa dkhaaSqaaiaadkfadaWgaaadbaGaaGymaaqabaaaleaacaWGsbWaaS baaWqaaiaaikdaaeqaaaqdcqGHRiI8aOGaeyypa0dabaGaeyypa0Ja amOuamaaDaaaleaacaaIYaaabaGaeqySdegaaOWaaSaaaeaacqaH8o qBcqqHOoqwdaqhaaWcbaGaaGymaiaaigdaaeaadaqadaqaaiabeg7a HbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdWMaamOuamaaBaaale aacaaIYaaabeaaaOGaayjkaiaawMcaaiabfI6aznaaDaaaleaacaaI XaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaae WaaeaacqaH8oqBcaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGa ayzkaaGaeyOeI0Iaeq4UdWMaeuiQdK1aa0baaSqaaiaaigdacaaIWa aabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiab eU7aSjaadkfadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacq qHOoqwdaqhaaWcbaGaaGymaiaaigdaaeaadaqadaqaaiabeg7aHbGa ayjkaiaawMcaaaaakmaabmaabaGaeqiVd0MaamOuamaaBaaaleaaca aIYaaabeaaaOGaayjkaiaawMcaaaqaaiabeU7aSnaaCaaaleqabaGa aGOmaaaakiabgkHiTiabeY7aTnaaCaaaleqabaGaaGOmaaaaaaGccq GHsislaeaacqGHsislcaWGsbWaa0baaSqaaiaaigdaaeaacqaHXoqy aaGcdaWcaaqaaiabeY7aTjabfI6aznaaDaaaleaacaaIXaGaaGymaa qaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH 7oaBcaWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeu iQdK1aa0baaSqaaiaaigdacaaIWaaabaWaaeWaaeaacqaHXoqyaiaa wIcacaGLPaaaaaGcdaqadaqaaiabeY7aTjaadkfadaWgaaWcbaGaaG ymaaqabaaakiaawIcacaGLPaaacqGHsislcqaH7oaBcqqHOoqwdaqh aaWcbaGaaGymaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawM caaaaakmaabmaabaGaeq4UdWMaamOuamaaBaaaleaacaaIXaaabeaa aOGaayjkaiaawMcaaiabfI6aznaaDaaaleaacaaIXaGaaGymaaqaam aabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH8oqB caWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaabaGaeq 4UdW2aaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaeqiVd02aaWbaaSqa beaacaaIYaaaaaaakiabg2da9aqaaiabg2da9maalaaabaGaeq4UdW MaamOuamaaDaaaleaacaaIYaaabaGaeqySdegaaOGaeuiQdK1aa0ba aSqaaiaaigdacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPa aaaaGcdaqadaqaaiabeU7aSjaadkfadaWgaaWcbaGaaGOmaaqabaaa kiaawIcacaGLPaaacqqHOoqwdaqhaaWcbaGaaGymaiaaigdaaeaada qadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeqiVd0Ma amOuamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgkHiTi abeU7aSjaadkfadaqhaaWcbaGaaGymaaqaaiabeg7aHbaakiabfI6a znaaDaaaleaacaaIXaGaaGimaaqaamaabmaabaGaeqySdegacaGLOa GaayzkaaaaaOWaaeWaaeaacqaH7oaBcaWGsbWaaSbaaSqaaiaaigda aeqaaaGccaGLOaGaayzkaaGaeuiQdK1aa0baaSqaaiaaigdacaaIXa aabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiab eY7aTjaadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaae aacqaH8oqBdaahaaWcbeqaaiaaikdaaaGccqGHsislcqaH7oaBdaah aaWcbeqaaiaaikdaaaaaaOGaaiOlaaaaaa@1590@

Для вычисления предела при μλ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTjabgk ziUkabeU7aSbaa@3DD9@  воспользуемся правилом Лопиталя. Получаем

R 1 R 2 r α Ψ 11 α λr Ψ 11 α μr dr = = lim μλ λ R 2 α Ψ 10 α λ R 2 Ψ 11 α μ R 2 λ R 1 α Ψ 10 α λ R 1 Ψ 11 α μ R 1 μ 2 λ 2 = = 1 2 lim μλ λ R 2 α+1 Ψ 10 α λ R 2 Ψ 11 α μ R 2 λ R 1 α+1 Ψ 10 α λ R 1 Ψ 11 α μ R 1 μ = = 1 2 R 2 α+1 Ψ 10 α λ R 2 Ψ 11 α λ R 2 R 1 α+1 Ψ 10 α λ R 1 Ψ 11 α λ R 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae aacaWGYbWaaWbaaSqabeaacqaHXoqyaaGccqqHOoqwdaqhaaWcbaGa aGymaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakm aabmaabaGaeq4UdWMaamOCaaGaayjkaiaawMcaaiabfI6aznaaDaaa leaacaaIXaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaa aaaOWaaeWaaeaacqaH8oqBcaWGYbaacaGLOaGaayzkaaGaamizaiaa dkhaaSqaaiaadkfadaWgaaadbaGaaGymaaqabaaaleaacaWGsbWaaS baaWqaaiaaikdaaeqaaaqdcqGHRiI8aOGaeyypa0dabaGaeyypa0Za aCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiabeY7aTjabgkziUkabeU 7aSbqabaGcdaWcaaqaaiabeU7aSjaadkfadaqhaaWcbaGaaGOmaaqa aiabeg7aHbaakiabfI6aznaaDaaaleaacaaIXaGaaGimaaqaamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBcaWG sbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeuiQdK1aa0 baaSqaaiaaigdacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGL PaaaaaGcdaqadaqaaiabeY7aTjaadkfadaWgaaWcbaGaaGOmaaqaba aakiaawIcacaGLPaaacqGHsislcqaH7oaBcaWGsbWaa0baaSqaaiaa igdaaeaacqaHXoqyaaGccqqHOoqwdaqhaaWcbaGaaGymaiaaicdaae aadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4U dWMaamOuamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabfI 6aznaaDaaaleaacaaIXaGaaGymaaqaamaabmaabaGaeqySdegacaGL OaGaayzkaaaaaOWaaeWaaeaacqaH8oqBcaWGsbWaaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaaabaGaeqiVd02aaWbaaSqabeaacaaI YaaaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaacaaIYaaaaaaakiabg2 da9aqaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaCbeaeaa ciGGSbGaaiyAaiaac2gaaSqaaiabeY7aTjabgkziUkabeU7aSbqaba GcdaWcaaqaaiabeU7aSjaadkfadaqhaaWcbaGaaGOmaaqaaiabeg7a HjabgUcaRiaaigdaaaGccqqHOoqwdaqhaaWcbaGaaGymaiaaicdaae aadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4U dWMaamOuamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiqbfI 6azzaafaWaa0baaSqaaiaaigdacaaIXaaabaWaaeWaaeaacqaHXoqy aiaawIcacaGLPaaaaaGcdaqadaqaaiabeY7aTjaadkfadaWgaaWcba GaaGOmaaqabaaakiaawIcacaGLPaaacqGHsislcqaH7oaBcaWGsbWa a0baaSqaaiaaigdaaeaacqaHXoqycqGHRaWkcaaIXaaaaOGaeuiQdK 1aa0baaSqaaiaaigdacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIca caGLPaaaaaGcdaqadaqaaiabeU7aSjaadkfadaWgaaWcbaGaaGymaa qabaaakiaawIcacaGLPaaacuqHOoqwgaqbamaaDaaaleaacaaIXaGa aGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaae aacqaH8oqBcaWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaaabaGaeqiVd0gaaiabg2da9aqaaiabg2da9maalaaabaGaaGymaa qaaiaaikdaaaWaamWaaeaacaWGsbWaa0baaSqaaiaaikdaaeaacqaH XoqycqGHRaWkcaaIXaaaaOGaeuiQdK1aa0baaSqaaiaaigdacaaIWa aabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiab eU7aSjaadkfadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacu qHOoqwgaqbamaaDaaaleaacaaIXaGaaGymaaqaamaabmaabaGaeqyS degacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBcaWGsbWaaSbaaS qaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaamOuamaaDaaa leaacaaIXaaabaGaeqySdeMaey4kaSIaaGymaaaakiabfI6aznaaDa aaleaacaaIXaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBcaWGsbWaaSbaaSqaaiaaigdaaeqaaa GccaGLOaGaayzkaaGafuiQdKLbauaadaqhaaWcbaGaaGymaiaaigda aeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq 4UdWMaamOuamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaGa ay5waiaaw2faaiaac6caaaaa@2AC7@

Далее воспользуемся следующими формулами, которые вытекают из свойств для производных функций Бесселя:

d Ψ 11 α λr dr =λ Ψ 11 α λr = = α r Ψ 11 α λr +λ Ψ 10 α λr , d Ψ 10 α λr dr =λ Ψ 10 α λr =λ Ψ 11 α λr . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaSaaae aacaWGKbGaeuiQdK1aa0baaSqaaiaaigdacaaIXaaabaWaaeWaaeaa cqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSjaadkhaai aawIcacaGLPaaaaeaacaWGKbGaamOCaaaacqGH9aqpcqaH7oaBcuqH OoqwgaqbamaaDaaaleaacaaIXaGaaGymaaqaamaabmaabaGaeqySde gacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBcaWGYbaacaGLOaGa ayzkaaGaeyypa0dabaGaeyypa0JaeyOeI0YaaSaaaeaacqaHXoqyae aacaWGYbaaaiabfI6aznaaDaaaleaacaaIXaGaaGymaaqaamaabmaa baGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBcaWGYb aacaGLOaGaayzkaaGaey4kaSIaeq4UdWMaeuiQdK1aa0baaSqaaiaa igdacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcda qadaqaaiabeU7aSjaadkhaaiaawIcacaGLPaaacaGGSaaabaWaaSaa aeaacaWGKbGaeuiQdK1aa0baaSqaaiaaigdacaaIWaaabaWaaeWaae aacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSjaadkha aiaawIcacaGLPaaaaeaacaWGKbGaamOCaaaacqGH9aqpcqaH7oaBcu qHOoqwgaqbamaaDaaaleaacaaIXaGaaGimaaqaamaabmaabaGaeqyS degacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBcaWGYbaacaGLOa GaayzkaaGaeyypa0JaeyOeI0Iaeq4UdWMaeuiQdK1aa0baaSqaaiaa igdacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcda qadaqaaiabeU7aSjaadkhaaiaawIcacaGLPaaacaGGUaaaaaa@9B2C@

Тогда

R 1 R 2 r α Ψ 11 α λr Ψ 11 α μr dr = = R 2 α+1 2 Ψ 10 α λ R 2 2 R 1 α+1 2 Ψ 10 α λ R 1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae aacaWGYbWaaWbaaSqabeaacqaHXoqyaaGccqqHOoqwdaqhaaWcbaGa aGymaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakm aabmaabaGaeq4UdWMaamOCaaGaayjkaiaawMcaaiabfI6aznaaDaaa leaacaaIXaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaa aaaOWaaeWaaeaacqaH8oqBcaWGYbaacaGLOaGaayzkaaGaamizaiaa dkhaaSqaaiaadkfadaWgaaadbaGaaGymaaqabaaaleaacaWGsbWaaS baaWqaaiaaikdaaeqaaaqdcqGHRiI8aOGaeyypa0dabaGaeyypa0Za aSaaaeaacaWGsbWaa0baaSqaaiaaikdaaeaacqaHXoqycqGHRaWkca aIXaaaaaGcbaGaaGOmaaaadaWadaqaaiabfI6aznaaDaaaleaacaaI XaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaae WaaeaacqaH7oaBcaWGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGa ayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0 YaaSaaaeaacaWGsbWaa0baaSqaaiaaigdaaeaacqaHXoqycqGHRaWk caaIXaaaaaGcbaGaaGOmaaaadaWadaqaaiabfI6aznaaDaaaleaaca aIXaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacqaH7oaBcaWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOa GaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaaaOGaaiOl aaaaaa@844F@

Если же μλ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTjabgc Mi5kabeU7aSbaa@3DB3@  и выполняется условие Ψ 11 α μ R 1 =0, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIXaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH8oqBcaWGsbWaaSbaaSqaaiaaigdaaeqaaa GccaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@465D@  то

R 1 R 2 r α Ψ 11 α λr Ψ 11 α μr dr =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabaGaam OCamaaCaaaleqabaGaeqySdegaaOGaeuiQdK1aa0baaSqaaiaaigda caaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqada qaaiabeU7aSjaadkhaaiaawIcacaGLPaaacqqHOoqwdaqhaaWcbaGa aGymaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakm aabmaabaGaeqiVd0MaamOCaaGaayjkaiaawMcaaiaadsgacaWGYbaa leaacaWGsbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaamOuamaaBaaame aacaaIYaaabeaaa0Gaey4kIipakiabg2da9iaaicdacaGGUaaaaa@5AD0@

Точно так же

R 1 R 2 r α Ψ 10 α λ n r Ψ 10 α λ k r dr = = 0,nk, R 2 α+1 2 Ψ 10 α λ n R 2 2 R 1 α+1 2 Ψ 10 α λ n R 1 2 ,k=n, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae aacaWGYbWaaWbaaSqabeaacqaHXoqyaaGccqqHOoqwdaqhaaWcbaGa aGymaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakm aabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaaGaayjk aiaawMcaaiabfI6aznaaDaaaleaacaaIXaGaaGimaaqaamaabmaaba GaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWc baGaam4AaaqabaGccaWGYbaacaGLOaGaayzkaaGaamizaiaadkhaaS qaaiaadkfadaWgaaadbaGaaGymaaqabaaaleaacaWGsbWaaSbaaWqa aiaaikdaaeqaaaqdcqGHRiI8aOGaeyypa0dabaGaeyypa0Zaaiqaaq aabeqaaiaaicdacaGGSaGaaGzbVlaad6gacqGHGjsUcaWGRbGaaiil aaqaamaalaaabaGaamOuamaaDaaaleaacaaIYaaabaGaeqySdeMaey 4kaSIaaGymaaaaaOqaaiaaikdaaaWaamWaaeaacqqHOoqwdaqhaaWc baGaaGymaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaa aakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOuamaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faam aaCaaaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaamOuamaaDaaa leaacaaIXaaabaGaeqySdeMaey4kaSIaaGymaaaaaOqaaiaaikdaaa WaamWaaeaacqqHOoqwdaqhaaWcbaGaaGymaiaaicdaaeaadaqadaqa aiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIXaaabeaaaOGaayjk aiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaakiaacY cacaaMe8UaaGjbVlaadUgacqGH9aqpcaWGUbGaaiilaaaacaGL7baa aaaa@9810@

Ψ 10 α λ n r 2 = R 2 α+1 2 Ψ 10 α λ n R 2 2 R 1 α+1 2 Ψ 10 α λ n R 1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaauWaae aacqqHOoqwdaqhaaWcbaGaaGymaiaaicdaaeaadaqadaqaaiabeg7a HbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6 gaaeqaaOGaamOCaaGaayjkaiaawMcaaaGaayzcSlaawQa7amaaCaaa leqabaGaaGOmaaaakiabg2da9maalaaabaGaamOuamaaDaaaleaaca aIYaaabaGaeqySdeMaey4kaSIaaGymaaaaaOqaaiaaikdaaaWaamWa aeaacqqHOoqwdaqhaaWcbaGaaGymaiaaicdaaeaadaqadaqaaiabeg 7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaa d6gaaeqaaOGaamOuamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawM caaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaakiabgkHiTaqa aiabgkHiTiaaysW7daWcaaqaaiaadkfadaqhaaWcbaGaaGymaaqaai abeg7aHjabgUcaRiaaigdaaaaakeaacaaIYaaaamaadmaabaGaeuiQ dK1aa0baaSqaaiaaigdacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawI cacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaa kiaadkfadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaiaawU facaGLDbaadaahaaWcbeqaaiaaikdaaaGccaGGUaaaaaa@7813@

В результате получаем j=0,1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaam OAaiabg2da9iaaicdacaGGSaGaaGymaaGaayjkaiaawMcaaaaa@3E25@

R 1 R 2 r α Ψ 1j α λ n r Ψ 1j α λ k r dr = 0,nk, Ψ 1 α λ n ,k=n; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabaGaam OCamaaCaaaleqabaGaeqySdegaaOGaeuiQdK1aa0baaSqaaiaaigda caWGQbaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqada qaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkhaaiaawIcacaGL PaaacqqHOoqwdaqhaaWcbaGaaGymaiaadQgaaeaadaqadaqaaiabeg 7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaa dUgaaeqaaOGaamOCaaGaayjkaiaawMcaaiaadsgacaWGYbaaleaaca WGsbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaamOuamaaBaaameaacaaI Yaaabeaaa0Gaey4kIipakiabg2da9maaceaaeaqabeaacaaIWaGaai ilaiaaywW7caWGUbGaeyiyIKRaam4AaiaacYcaaeaacqqHOoqwdaqh aaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaO WaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGL PaaacaGGSaGaaGjbVlaaysW7caWGRbGaeyypa0JaamOBaiaacUdaaa Gaay5Eaaaaaa@760D@  (4.3)

Ψ 1 α λ n = Ψ 1j α λ n r 2 = = R 2 α+1 2 Ψ 10 α λ n R 2 2 R 1 α+1 2 Ψ 10 α λ n R 1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeuiQdK 1aa0baaSqaaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMca aaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGLOa GaayzkaaGaeyypa0ZaauWaaeaacqqHOoqwdaqhaaWcbaGaaGymaiaa dQgaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaaba Gaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawMca aaGaayzcSlaawQa7amaaCaaaleqabaGaaGOmaaaakiabg2da9aqaai abg2da9maalaaabaGaamOuamaaDaaaleaacaaIYaaabaGaeqySdeMa ey4kaSIaaGymaaaaaOqaaiaaikdaaaWaamWaaeaacqqHOoqwdaqhaa WcbaGaaGymaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMca aaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOuam aaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2fa amaaCaaaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaamOuamaaDa aaleaacaaIXaaabaGaeqySdeMaey4kaSIaaGymaaaaaOqaaiaaikda aaWaamWaaeaacqqHOoqwdaqhaaWcbaGaaGymaiaaicdaaeaadaqada qaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIXaaabeaaaOGaay jkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaakiaa c6caaaaa@81E9@  (4.4)

В остальных случаях:

– Для граничных условий (3.15) λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  удовлетворяют уравнению (3.23):

R 1 R 2 r α Ψ 0j α λ n r Ψ 0j α λ k r dr = 0,nk, Ψ 0 α λ n ,k=n; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabaGaam OCamaaCaaaleqabaGaeqySdegaaOGaeuiQdK1aa0baaSqaaiaaicda caWGQbaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqada qaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkhaaiaawIcacaGL PaaacqqHOoqwdaqhaaWcbaGaaGimaiaadQgaaeaadaqadaqaaiabeg 7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaa dUgaaeqaaOGaamOCaaGaayjkaiaawMcaaiaadsgacaWGYbaaleaaca WGsbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaamOuamaaBaaameaacaaI Yaaabeaaa0Gaey4kIipakiabg2da9maaceaaeaqabeaacaaIWaGaai ilaiaaywW7caWGUbGaeyiyIKRaam4AaiaacYcaaeaacqqHOoqwdaqh aaWcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaO WaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGL PaaacaGGSaGaaGjbVlaaysW7caWGRbGaeyypa0JaamOBaiaacUdaaa Gaay5Eaaaaaa@760A@  (4.5)

Ψ 0 α λ n = Ψ 0j α λ n r 2 = = R 2 α+1 2 Ψ 01 α λ n R 2 2 R 1 α+1 2 Ψ 01 α λ n R 1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeuiQdK 1aa0baaSqaaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMca aaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGLOa GaayzkaaGaeyypa0ZaauWaaeaacqqHOoqwdaqhaaWcbaGaaGimaiaa dQgaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaaba Gaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawMca aaGaayzcSlaawQa7amaaCaaaleqabaGaaGOmaaaakiabg2da9aqaai abg2da9maalaaabaGaamOuamaaDaaaleaacaaIYaaabaGaeqySdeMa ey4kaSIaaGymaaaaaOqaaiaaikdaaaWaamWaaeaacqqHOoqwdaqhaa WcbaGaaGimaiaaigdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMca aaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOuam aaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2fa amaaCaaaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaamOuamaaDa aaleaacaaIXaaabaGaeqySdeMaey4kaSIaaGymaaaaaOqaaiaaikda aaWaamWaaeaacqqHOoqwdaqhaaWcbaGaaGimaiaaigdaaeaadaqada qaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIXaaabeaaaOGaay jkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaakiaa c6caaaaa@81E7@  (4.6)

– Для граничных условий (3.16) λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  удовлетворяют уравнению (3.24):

R 1 R 2 r α Ψ 1j α λ n r Ψ 1j α λ k r dr = 0,nk, Ψ ˜ 1 α λ n ,k=n; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabaGaam OCamaaCaaaleqabaGaeqySdegaaOGaeuiQdK1aa0baaSqaaiaaigda caWGQbaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqada qaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkhaaiaawIcacaGL PaaacqqHOoqwdaqhaaWcbaGaaGymaiaadQgaaeaadaqadaqaaiabeg 7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaa dUgaaeqaaOGaamOCaaGaayjkaiaawMcaaiaadsgacaWGYbaaleaaca WGsbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaamOuamaaBaaameaacaaI Yaaabeaaa0Gaey4kIipakiabg2da9maaceaaeaqabeaacaaIWaGaai ilaiaaywW7caWGUbGaeyiyIKRaam4AaiaacYcaaeaacuqHOoqwgaac amaaDaaaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPa aaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaaOGaayjk aiaawMcaaiaacYcacaaMe8UaaGjbVlaadUgacqGH9aqpcaWGUbGaai 4oaaaacaGL7baaaaa@761C@  (4.7)

Ψ ˜ 1 α λ n = Ψ 1j α λ n r 2 = = R 2 α+1 2 Ψ 11 α λ n R 2 2 R 1 α+1 2 Ψ 10 α λ n R 1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGafuiQdK LbaGaadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGa ayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaaaki aawIcacaGLPaaacqGH9aqpdaqbdaqaaiabfI6aznaaDaaaleaacaaI XaGaamOAaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaae WaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGYbaacaGLOaGa ayzkaaaacaGLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaOGaeyypa0 dabaGaeyypa0ZaaSaaaeaacaWGsbWaa0baaSqaaiaaikdaaeaacqaH XoqycqGHRaWkcaaIXaaaaaGcbaGaaGOmaaaadaWadaqaaiabfI6azn aaDaaaleaacaaIXaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGa ayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGcca WGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLBbGa ayzxaaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0YaaSaaaeaacaWGsb Waa0baaSqaaiaaigdaaeaacqaHXoqycqGHRaWkcaaIXaaaaaGcbaGa aGOmaaaadaWadaqaaiabfI6aznaaDaaaleaacaaIXaGaaGimaaqaam aabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaB daWgaaWcbaGaamOBaaqabaGccaWGsbWaaSbaaSqaaiaaigdaaeqaaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaa aOGaaiOlaaaaaa@81F9@  (4.8)

– Для граничных условий (3.17) λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  удовлетворяют уравнению (3.25):

R 1 R 2 r α Ψ 0j α λ n r Ψ 0j α λ k r dr = 0,nk, Ψ ˜ 0 α λ n ,k=n; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabaGaam OCamaaCaaaleqabaGaeqySdegaaOGaeuiQdK1aa0baaSqaaiaaicda caWGQbaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqada qaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkhaaiaawIcacaGL PaaacqqHOoqwdaqhaaWcbaGaaGimaiaadQgaaeaadaqadaqaaiabeg 7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaa dUgaaeqaaOGaamOCaaGaayjkaiaawMcaaiaadsgacaWGYbaaleaaca WGsbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaamOuamaaBaaameaacaaI Yaaabeaaa0Gaey4kIipakiabg2da9maaceaaeaqabeaacaaIWaGaai ilaiaaywW7caWGUbGaeyiyIKRaam4AaiaacYcaaeaacuqHOoqwgaac amaaDaaaleaacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPa aaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaaOGaayjk aiaawMcaaiaacYcacaaMe8UaaGjbVlaadUgacqGH9aqpcaWGUbGaai 4oaaaacaGL7baaaaa@7619@  (4.9)

Ψ ˜ 0 α λ n = Ψ 0j α λ n r 2 = = R 2 α+1 2 Ψ 00 α λ n R 2 2 R 1 α+1 2 Ψ 01 α λ n R 1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGafuiQdK LbaGaadaqhaaWcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGa ayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaaaki aawIcacaGLPaaacqGH9aqpdaqbdaqaaiabfI6aznaaDaaaleaacaaI WaGaamOAaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaae WaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGYbaacaGLOaGa ayzkaaaacaGLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaOGaeyypa0 dabaGaeyypa0ZaaSaaaeaacaWGsbWaa0baaSqaaiaaikdaaeaacqaH XoqycqGHRaWkcaaIXaaaaaGcbaGaaGOmaaaadaWadaqaaiabfI6azn aaDaaaleaacaaIWaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGa ayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGcca WGsbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLBbGa ayzxaaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0YaaSaaaeaacaWGsb Waa0baaSqaaiaaigdaaeaacqaHXoqycqGHRaWkcaaIXaaaaaGcbaGa aGOmaaaadaWadaqaaiabfI6aznaaDaaaleaacaaIWaGaaGymaaqaam aabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaB daWgaaWcbaGaamOBaaqabaGccaWGsbWaaSbaaSqaaiaaigdaaeqaaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaa aOGaaiOlaaaaaa@81F5@  (4.10)

Таким образом, функции Ψ kl α λ n r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaWGRbGaamiBaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGYb aacaGLOaGaayzkaaaaaa@44AE@ , взятые соответствующими парами, являются ортогональными на промежутке R 1 r R 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkfadaWgaa WcbaGaaGymaaqabaGccqGHKjYOcaWGYbGaeyizImQaamOuamaaBaaa leaacaaIXaaabeaaaaa@4069@  в смысле скалярного произведения, определенного равенством α=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaeq ySdeMaeyypa0JaaGymaiaacYcacaaIYaaacaGLOaGaayzkaaaaaa@3ED7@

f,g = R 1 R 2 r α f r g r dr . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaam OzaiaacYcacaWGNbaacaGLOaGaayzkaaGaeyypa0Zaa8qCaeaacaWG YbWaaWbaaSqabeaacqaHXoqyaaGccaWGMbWaaeWaaeaacaWGYbaaca GLOaGaayzkaaGaam4zamaabmaabaGaamOCaaGaayjkaiaawMcaaiaa dsgacaWGYbaaleaacaWGsbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaam OuamaaBaaameaacaaIYaaabeaaa0Gaey4kIipakiaac6caaaa@4FCB@

Покажем, что система функций Ψ kl 1 λ n r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaWGRbGaamiBaaqaamaabmaabaGaaGymaaGaayjkaiaawMca aaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaa GaayjkaiaawMcaaaaa@43CA@  является полной, т.е. f r , Ψ kl 1 λ n r =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaam OzamaabmaabaGaamOCaaGaayjkaiaawMcaaiaacYcacqqHOoqwdaqh aaWcbaGaam4AaiaadYgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPa aaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkha aiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@4B2E@  тогда и только тогда, когда f r 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaqada qaaiaadkhaaiaawIcacaGLPaaacqGHHjIUcaaIWaaaaa@3E70@ . Ограничимся случаем, когда f r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaqada qaaiaadkhaaiaawIcacaGLPaaaaaa@3BED@  непрерывна в промежутке R 1 , R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam OuamaaBaaaleaacaaIXaaabeaakiaacYcacaWGsbWaaSbaaSqaaiaa ikdaaeqaaaGccaGLBbGaayzxaaaaaa@3EB5@ . В силу (4.1) f r , Ψ kl 1 λ n r =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaam OzamaabmaabaGaamOCaaGaayjkaiaawMcaaiaacYcacqqHOoqwdaqh aaWcbaGaam4AaiaadYgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPa aaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkha aiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@4B2E@  тогда и только тогда, когда f n =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaWgaa WcbaGaamOBaaqabaGccqGH9aqpcaaIWaaaaa@3C56@ . Тогда для функций Ψ k0 1 λ n r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaWGRbGaaGimaaqaamaabmaabaGaaGymaaGaayjkaiaawMca aaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaa GaayjkaiaawMcaaaaa@4393@  из первого равенства в (4.1) имеем

R 1 r ξf ξ dξ = R 1 r n=1 f n ξ Ψ k0 1 λ n ξ dξ = = n=1 f n R 1 r ξ Ψ k0 1 λ n ξ dξ = = n=1 f n λ n r Ψ k1 1 λ n r R 1 Ψ k1 1 λ n R 1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae aacqaH+oaEcaWGMbWaaeWaaeaacqaH+oaEaiaawIcacaGLPaaacaWG KbGaeqOVdGhaleaacaWGsbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaam OCaaqdcqGHRiI8aOGaeyypa0Zaa8qCaeaadaaeWbqaaiaadAgadaWg aaWcbaGaamOBaaqabaGccqaH+oaEcqqHOoqwdaqhaaWcbaGaam4Aai aaicdaaeaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaaGcdaqadaqa aiabeU7aSnaaBaaaleaacaWGUbaabeaakiabe67a4bGaayjkaiaawM caaaWcbaGaamOBaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoa kiaadsgacqaH+oaEaSqaaiaadkfadaWgaaadbaGaaGymaaqabaaale aacaWGYbaaniabgUIiYdGccqGH9aqpaeaacqGH9aqpdaaeWbqaaiaa dAgadaWgaaWcbaGaamOBaaqabaGcdaWdXbqaaiabe67a4jabfI6azn aaDaaaleaacaWGRbGaaGimaaqaamaabmaabaGaaGymaaGaayjkaiaa wMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaeq OVdGhacaGLOaGaayzkaaGaamizaiabe67a4bWcbaGaamOuamaaBaaa meaacaaIXaaabeaaaSqaaiaadkhaa0Gaey4kIipaaSqaaiaad6gacq GH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGccqGH9aqpaeaacqGH 9aqpdaaeWbqaamaalaaabaGaamOzamaaBaaaleaacaWGUbaabeaaaO qaaiabeU7aSnaaBaaaleaacaWGUbaabeaaaaGcdaWadaqaaiaadkha cqqHOoqwdaqhaaWcbaGaam4Aaiaaigdaaeaadaqadaqaaiaaigdaai aawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaacaWGUbaa beaakiaadkhaaiaawIcacaGLPaaacqGHsislcaWGsbWaaSbaaSqaai aaigdaaeqaaOGaeuiQdK1aa0baaSqaaiaadUgacaaIXaaabaWaaeWa aeaacaaIXaaacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaa WcbaGaamOBaaqabaGccaWGsbWaaSbaaSqaaiaaigdaaeqaaaGccaGL OaGaayzkaaaacaGLBbGaayzxaaaaleaacaWGUbGaeyypa0JaaGymaa qaaiabg6HiLcqdcqGHris5aOGaeyypa0JaaGimaiaac6caaaaa@B1FA@

В силу непрерывности функции f r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaqada qaaiaadkhaaiaawIcacaGLPaaaaaa@3BED@  на промежутке R 1 , R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam OuamaaBaaaleaacaaIXaaabeaakiaacYcacaWGsbWaaSbaaSqaaiaa ikdaaeqaaaGccaGLBbGaayzxaaaaaa@3EB5@  получаем, что f r 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaqada qaaiaadkhaaiaawIcacaGLPaaacqGHHjIUcaaIWaaaaa@3E70@ . Аналогично для функций Ψ k1 1 λ n r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaWGRbGaaGymaaqaamaabmaabaGaaGymaaGaayjkaiaawMca aaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaa GaayjkaiaawMcaaaaa@4394@  из первого равенства (4.1) находим

R 1 r f ξ dξ = R 1 r n=1 f n Ψ k1 1 λ n ξ dξ = = n=1 f n R 1 r Ψ k1 1 λ n ξ dξ = = n=1 f n λ n Ψ k0 1 λ n R 1 Ψ k0 1 λ n r =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae aacaWGMbWaaeWaaeaacqaH+oaEaiaawIcacaGLPaaacaWGKbGaeqOV dGhaleaacaWGsbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaamOCaaqdcq GHRiI8aOGaeyypa0Zaa8qCaeaadaaeWbqaaiaadAgadaWgaaWcbaGa amOBaaqabaGccqqHOoqwdaqhaaWcbaGaam4Aaiaaigdaaeaadaqada qaaiaaigdaaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaa leaacaWGUbaabeaakiabe67a4bGaayjkaiaawMcaaaWcbaGaamOBai abg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoakiaadsgacqaH+oaE aSqaaiaadkfadaWgaaadbaGaaGymaaqabaaaleaacaWGYbaaniabgU IiYdGccqGH9aqpaeaacqGH9aqpdaaeWbqaaiaadAgadaWgaaWcbaGa amOBaaqabaGcdaWdXbqaaiabfI6aznaaDaaaleaacaWGRbGaaGymaa qaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakmaabmaabaGaeq4U dW2aaSbaaSqaaiaad6gaaeqaaOGaeqOVdGhacaGLOaGaayzkaaGaam izaiabe67a4bWcbaGaamOuamaaBaaameaacaaIXaaabeaaaSqaaiaa dkhaa0Gaey4kIipaaSqaaiaad6gacqGH9aqpcaaIXaaabaGaeyOhIu kaniabggHiLdGccqGH9aqpaeaacqGH9aqpdaaeWbqaamaalaaabaGa amOzamaaBaaaleaacaWGUbaabeaaaOqaaiabeU7aSnaaBaaaleaaca WGUbaabeaaaaGcdaWadaqaaiabfI6aznaaDaaaleaacaWGRbGaaGim aaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakmaabmaabaGaeq 4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIXaaa beaaaOGaayjkaiaawMcaaiabgkHiTiabfI6aznaaDaaaleaacaWGRb GaaGimaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakmaabmaa baGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawM caaaGaay5waiaaw2faaaWcbaGaamOBaiabg2da9iaaigdaaeaacqGH EisPa0GaeyyeIuoakiabg2da9iaaicdacaGGUaaaaaa@A9F2@

И в этом случае f r 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaqada qaaiaadkhaaiaawIcacaGLPaaacqGHHjIUcaaIWaaaaa@3E70@  в силу ее непрерывности. Доказательство полноты системы функций Ψ kl 2 λ n r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaWGRbGaamiBaaqaamaabmaabaGaaGOmaaGaayjkaiaawMca aaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaa GaayjkaiaawMcaaaaa@43CB@  выполняется аналогичным образом. Приведенное рассуждение обобщается на случай пространства кусочно-непрерывных на отрезке R 1 , R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam OuamaaBaaaleaacaaIXaaabeaakiaacYcacaWGsbWaaSbaaSqaaiaa ikdaaeqaaaGccaGLBbGaayzxaaaaaa@3EB5@  функций. Доказательство полноты при более общих предположениях выходит за рамки настоящей работы. Отметим только, что доказательство полноты функций Бесселя в пространстве L 2 0,R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaWgaa WcbaGaaGOmaaqabaGcdaWadaqaaiaaicdacaGGSaGaamOuaaGaay5w aiaaw2faaaaa@3E78@  приводится в монографии [37].

5. ОБОБЩЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Доопределим функции Ψ ij α λ n r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaWGPbGaamOAaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGYb aacaGLOaGaayzkaaaaaa@44AA@  следующим образом:

Ψ 11 α λ n ξ = sin λ n x,α=0,ξ=x, Y 1 α λ n R 2 J 1 α λ n r J 1 α λ n R 2 Y 1 α λ n r ,α=1,2,ξ=r; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIXaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+o aEaiaawIcacaGLPaaacqGH9aqpdaGabaabaeqabaGaci4CaiaacMga caGGUbGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamiEaiaacYcaca aMf8UaeqySdeMaeyypa0JaaGimaiaacYcacaaMf8UaeqOVdGNaeyyp a0JaamiEaiaacYcaaeaacaWGzbWaa0baaSqaaiaaigdaaeaadaqada qaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaiaadQeadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqyS degacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaam OBaaqabaGccaWGYbaacaGLOaGaayzkaaGaeyOeI0IaamOsamaaDaaa leaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcda qadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkfadaWgaaWc baGaaGOmaaqabaaakiaawIcacaGLPaaacaWGzbWaa0baaSqaaiaaig daaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGa eq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawMcaai aacYcacaaMf8UaeqySdeMaeyypa0JaaGymaiaacYcacaaIYaGaaiil aiaaywW7cqaH+oaEcqGH9aqpcaWGYbGaai4oaaaacaGL7baaaaa@93C7@  (5.1)

Ψ 10 α λ n ξ = cos λ n x,α=0,ξ=x, Y 1 α λ n R 2 J 0 α λ n r J 1 α λ n R 2 Y 0 α λ n r ,α=1,2,ξ=r; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIXaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+o aEaiaawIcacaGLPaaacqGH9aqpdaGabaabaeqabaGaci4yaiaac+ga caGGZbGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamiEaiaacYcaca aMf8UaeqySdeMaeyypa0JaaGimaiaacYcacaaMf8UaeqOVdGNaeyyp a0JaamiEaiaacYcaaeaacaWGzbWaa0baaSqaaiaaigdaaeaadaqada qaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaiaadQeadaqhaaWcbaGaaGimaaqaamaabmaabaGaeqyS degacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaam OBaaqabaGccaWGYbaacaGLOaGaayzkaaGaeyOeI0IaamOsamaaDaaa leaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcda qadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkfadaWgaaWc baGaaGOmaaqabaaakiaawIcacaGLPaaacaWGzbWaa0baaSqaaiaaic daaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGa eq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawMcaai aacYcacaaMf8UaeqySdeMaeyypa0JaaGymaiaacYcacaaIYaGaaiil aiaaywW7cqaH+oaEcqGH9aqpcaWGYbGaai4oaaaacaGL7baaaaa@93BF@  (5.2)

Ψ 01 α λ n ξ = cos λ n x,α=0,ξ=x, Y 0 α λ n R 2 J 1 α λ n r J 0 α λ n R 2 Y 1 α λ n r ,α=1,2,ξ=r; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIWaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+o aEaiaawIcacaGLPaaacqGH9aqpdaGabaabaeqabaGaci4yaiaac+ga caGGZbGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamiEaiaacYcaca aMf8UaeqySdeMaeyypa0JaaGimaiaacYcacaaMf8UaeqOVdGNaeyyp a0JaamiEaiaacYcaaeaacaWGzbWaa0baaSqaaiaaicdaaeaadaqada qaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaiaadQeadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqyS degacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaam OBaaqabaGccaWGYbaacaGLOaGaayzkaaGaeyOeI0IaamOsamaaDaaa leaacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcda qadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkfadaWgaaWc baGaaGOmaaqabaaakiaawIcacaGLPaaacaWGzbWaa0baaSqaaiaaig daaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGa eq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawMcaai aacYcacaaMf8UaeqySdeMaeyypa0JaaGymaiaacYcacaaIYaGaaiil aiaaywW7cqaH+oaEcqGH9aqpcaWGYbGaai4oaaaacaGL7baaaaa@93BF@  (5.3)

Ψ 00 α λ n ξ = sin λ n x,α=0,ξ=x, Y 0 α λ n R 2 J 0 α λ n r J 0 α λ n R 2 Y 0 α λ n r ,α=1,2,ξ=r. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIWaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+o aEaiaawIcacaGLPaaacqGH9aqpdaGabaabaeqabaGaci4CaiaacMga caGGUbGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamiEaiaacYcaca aMf8UaeqySdeMaeyypa0JaaGimaiaacYcacaaMf8UaeqOVdGNaeyyp a0JaamiEaiaacYcaaeaacaWGzbWaa0baaSqaaiaaicdaaeaadaqada qaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaamOuamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaiaadQeadaqhaaWcbaGaaGimaaqaamaabmaabaGaeqyS degacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaam OBaaqabaGccaWGYbaacaGLOaGaayzkaaGaeyOeI0IaamOsamaaDaaa leaacaaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcda qadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadkfadaWgaaWc baGaaGOmaaqabaaakiaawIcacaGLPaaacaWGzbWaa0baaSqaaiaaic daaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGa eq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawMcaai aacYcacaaMf8UaeqySdeMaeyypa0JaaGymaiaacYcacaaIYaGaaiil aiaaywW7cqaH+oaEcqGH9aqpcaWGYbGaaiOlaaaacaGL7baaaaa@93B4@  (5.4)

Ортогональность этих функций, очевидно, имеет место и для задач в прямоугольной декартовой системе координат α=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaeq ySdeMaeyypa0JaaGimaaGaayjkaiaawMcaaaaa@3D6A@  на отрезке 0,1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaaG imaiaacYcacaaIXaaacaGLBbGaayzxaaaaaa@3C99@ , при этом

Ψ 1 α λ n = Ψ 0 α λ n = Ψ ˜ 1 α λ n = Ψ ˜ 0 α λ n =2. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIXaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGc daqadaqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawM caaiabg2da9iabfI6aznaaDaaaleaacaaIWaaabaWaaeWaaeaacqaH XoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSnaaBaaaleaaca WGUbaabeaaaOGaayjkaiaawMcaaiabg2da9maaGaaabaGaeuiQdKfa caGLdmaadaqhaaWcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOa GaayzkaaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaaa kiaawIcacaGLPaaacqGH9aqpdaaiaaqaaiabfI6azbGaay5adaWaa0 baaSqaaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaa kmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaay zkaaGaeyypa0JaaGOmaiaac6caaaa@67C6@

Доказательство полноты тригонометрической системы приводится в работе [38].

Теперь все полученные ранее результаты объединим в табл. 1.

 

Таблица 1. Собственные функции задачи Штурма MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbuaqa aaaaaaaaWdbiaa=nbiaaa@3781@ Лиувилля

Граничные условия

Решения задачи Штурма MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=nbiaaa@3780@ Лиувилля

Задачи для круга 0rR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacqGHKj YOcaWGYbGaeyizImQaamOuaaaa@3E74@  (цилиндр, сфера)

V R =0, Φ R =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiaadkfaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaaywW7 cuqHMoGrgaqbamaabmaabaGaamOuaaGaayjkaiaawMcaaiabg2da9i aaicdacaGGUaaaaa@4613@

V r = n=1 v n J 1 α λ n r ,Φ r = n=1 φ n J 0 α λ n r , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiaadkhaaiaawIcacaGLPaaacqGH9aqpdaaeWbqaceaaOgGaamOD amaaBaaaleaacaWGUbaabeaakiaadQeadaqhaaWcbaGaaGymaaqaam aabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH7oaB daWgaaWcbaGaamOBaaqabaGccaWGYbaacaGLOaGaayzkaaaaleaaca WGUbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5aOGaaiilaiaa ywW7cqqHMoGrdaqadaqaaiaadkhaaiaawIcacaGLPaaacqGH9aqpda aeWbqaaiabeA8aQnaaBaaaleaacaWGUbaabeaakiaadQeadaqhaaWc baGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaae WaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGYbaacaGLOaGa ayzkaaaaleaacaWGUbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHri s5aOGaaiilaaaa@6BF4@

J 1 α λ n R =0, J 0 α λ n R =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsbaacaGLOa GaayzkaaGaeyypa0JaaGimaiaacYcacaaMf8UaamOsamaaDaaaleaa caaIWaaabaWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaahaa WcbeqaaOGamai8gkdiIcaadaqadaqaaiabeU7aSnaaBaaaleaacaWG UbaabeaakiaadkfaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOlaa aa@566C@

Φ R =0, V R + αV R R ΛΦ R =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaeuOPdy 0aaeWaaeaacaWGsbaacaGLOaGaayzkaaGaeyypa0JaaGimaiaacYca aeaaceWGwbGbauaadaqadaqaaiaadkfaaiaawIcacaGLPaaacqGHRa WkdaWcaaqaaiabeg7aHjaadAfadaqadaqaaiaadkfaaiaawIcacaGL PaaaaeaacaWGsbaaaiabgkHiTiabfU5amjabfA6agnaabmaabaGaam OuaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaaaaaa@516B@

V r = n=1 v n J 1 α λ n r ,Φ r = n=1 φ n J 0 α λ n r , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiaadkhaaiaawIcacaGLPaaacqGH9aqpdaaeWbqaaiaadAhadaWg aaWcbaGaamOBaaqabaGccaWGkbWaa0baaSqaaiaaigdaaeaadaqada qaaiabeg7aHbGaayjkaiaawMcaaaaakmaabmaabaGaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaamOCaaGaayjkaiaawMcaaaWcbaGaamOBai abg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoakiaacYcacaaMf8Ua euOPdy0aaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0ZaaabCae aacqaHgpGAdaWgaaWcbaGaamOBaaqabaGccaWGkbWaa0baaSqaaiaa icdaaeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakmaaCaaale qabaGccWaGWBOmGikaamaabmaabaGaeq4UdW2aaSbaaSqaaiaad6ga aeqaaOGaamOCaaGaayjkaiaawMcaaaWcbaGaamOBaiabg2da9iaaig daaeaacqGHEisPa0GaeyyeIuoakiaacYcaaaa@6E77@

J 0 α λ n R =0, λ n R J 1 α λ n R + J 1 α λ n R =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaqhaa WcbaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWa aeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsbaacaGLOa GaayzkaaGaeyypa0JaaGimaiaacYcacaaMf8Uaeq4UdW2aaSbaaSqa aiaad6gaaeqaaOGaamOuaiaadQeadaqhaaWcbaGaaGymaaqaamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaOWaaWbaaSqabeaakiadacVH YaIOaaWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsb aacaGLOaGaayzkaaGaey4kaSIaamOsamaaDaaaleaacaaIXaaabaWa aeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaGcdaqadaqaaiabeU7aSn aaBaaaleaacaWGUbaabeaakiaadkfaaiaawIcacaGLPaaacqGH9aqp caaIWaGaaiOlaaaa@6528@

Задачи для отрезка aξb MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadggacqGHKj YOcqaH+oaEcqGHKjYOcaWGIbaaaa@3F7C@

V a =0, Φ a =0, V b =0, Φ b =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaamOvam aabmaabaGaamyyaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGa aGzbVlqbfA6agzaafaWaaeWaaeaacaWGHbaacaGLOaGaayzkaaGaey ypa0JaaGimaiaacYcaaeaacaWGwbWaaeWaaeaacaWGIbaacaGLOaGa ayzkaaGaeyypa0JaaGimaiaacYcacaaMf8UafuOPdyKbauaadaqada qaaiaadkgaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOlaaaaaa@53E7@

V ξ = n=1 v n Ψ 11 α λ n ξ ,Φ ξ = n=k φ n Ψ 10 α λ n ξ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiabe67a4bGaayjkaiaawMcaaiabg2da9maaqahabaGaamODamaa BaaaleaacaWGUbaabeaakiabfI6aznaaDaaaleaacaaIXaGaaGymaa qaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH 7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+oaEaiaawIcacaGLPaaaaS qaaiaad6gacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGccaGG SaGaaGzbVlabfA6agnaabmaabaGaeqOVdGhacaGLOaGaayzkaaGaey ypa0ZaaabCaeaacqaHgpGAdaWgaaWcbaGaamOBaaqabaGccqqHOoqw daqhaaWcbaGaaGymaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkai aawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGa eqOVdGhacaGLOaGaayzkaaaaleaacaWGUbGaeyypa0Jaam4Aaaqaai abg6HiLcqdcqGHris5aOGaaiilaaaa@71A3@

при α=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabg2 da9iaaicdaaaa@3BE1@ , k=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgacqGH9a qpcaaIWaaaaa@3B32@ , a,b = 0,1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam yyaiaacYcacaWGIbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaaI WaGaaiilaiaaigdaaiaawUfacaGLDbaaaaa@420E@   λ n =πn MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaakiabg2da9iabec8aWjaad6gaaaa@3F15@ ;

при α=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabg2 da9iaaigdacaGGSaGaaGOmaaaa@3D4E@ , k=1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgacqGH9a qpcaaIXaaaaa@3B33@ , a,b = R 1 , R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam yyaiaacYcacaWGIbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaWG sbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkfadaWgaaWcbaGaaG OmaaqabaaakiaawUfacaGLDbaaaaa@442A@ , λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  удовлетворят

уравнению Ψ 11 α λ n R 1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIXaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsb WaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGim aiaac6caaaa@4786@

Φ a =0,Φ b =0, V a + αV a a ΛΦ a =0, V b + αV b b ΛΦ b =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaeuOPdy 0aaeWaaeaacaWGHbaacaGLOaGaayzkaaGaeyypa0JaaGimaiaacYca caaMf8UaeuOPdy0aaeWaaeaacaWGIbaacaGLOaGaayzkaaGaeyypa0 JaaGimaiaacYcaaeaaceWGwbGbauaadaqadaqaaiaadggaaiaawIca caGLPaaacqGHRaWkdaWcaaqaaiabeg7aHjaadAfadaqadaqaaiaadg gaaiaawIcacaGLPaaaaeaacaWGHbaaaiabgkHiTiabfU5amjabfA6a gnaabmaabaGaamyyaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSa aabaGabmOvayaafaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaGaey4k aSYaaSaaaeaacqaHXoqycaWGwbWaaeWaaeaacaWGIbaacaGLOaGaay zkaaaabaGaamOyaaaacqGHsislcqqHBoatcqqHMoGrdaqadaqaaiaa dkgaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOlaaaaaa@6C75@

V ξ = n=k v n Ψ 01 α λ n ξ ,Φ ξ = n=1 φ n Ψ 00 α λ n ξ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiabe67a4bGaayjkaiaawMcaaiabg2da9maaqahabaGaamODamaa BaaaleaacaWGUbaabeaakiabfI6aznaaDaaaleaacaaIWaGaaGymaa qaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH 7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+oaEaiaawIcacaGLPaaaaS qaaiaad6gacqGH9aqpcaWGRbaabaGaeyOhIukaniabggHiLdGccaGG SaGaaGzbVlabfA6agnaabmaabaGaeqOVdGhacaGLOaGaayzkaaGaey ypa0ZaaabCaeaacqaHgpGAdaWgaaWcbaGaamOBaaqabaGccqqHOoqw daqhaaWcbaGaaGimaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkai aawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGa eqOVdGhacaGLOaGaayzkaaaaleaacaWGUbGaeyypa0JaaGymaaqaai abg6HiLcqdcqGHris5aOGaaiilaaaa@71A1@

при α=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabg2 da9iaaicdaaaa@3BE1@ , k=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgacqGH9a qpcaaIWaaaaa@3B32@ , a,b = 0,1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam yyaiaacYcacaWGIbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaaI WaGaaiilaiaaigdaaiaawUfacaGLDbaaaaa@420E@ , λ n =πn MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaakiabg2da9iabec8aWjaad6gaaaa@3F15@ ;

при α=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabg2 da9iaaigdacaGGSaGaaGOmaaaa@3D4E@ , k=1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgacqGH9a qpcaaIXaaaaa@3B33@ , a,b = R 1 , R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam yyaiaacYcacaWGIbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaWG sbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkfadaWgaaWcbaGaaG OmaaqabaaakiaawUfacaGLDbaaaaa@442A@ , λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  удовлетворят

уравнению Ψ 00 α λ n R 1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIWaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsb WaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGim aiaac6caaaa@4784@

Φ b =0, V b + αV b b ΛΦ b =0, V a =0, Φ a =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaeuOPdy 0aaeWaaeaacaWGIbaacaGLOaGaayzkaaGaeyypa0JaaGimaiaacYca caaMf8oabaGabmOvayaafaWaaeWaaeaacaWGIbaacaGLOaGaayzkaa Gaey4kaSYaaSaaaeaacqaHXoqycaWGwbWaaeWaaeaacaWGIbaacaGL OaGaayzkaaaabaGaamOyaaaacqGHsislcqqHBoatcqqHMoGrdaqada qaaiaadkgaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaaqaaiaa dAfadaqadaqaaiaadggaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaai ilaiaaywW7cuqHMoGrgaqbamaabmaabaGaamyyaaGaayjkaiaawMca aiabg2da9iaaicdacaGGUaaaaaa@60F7@

V ξ = n=1 v n Ψ 11 α λ n ξ ,Φ ξ = n=1 φ n Ψ 10 α λ n ξ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiabe67a4bGaayjkaiaawMcaaiabg2da9maaqahabaGaamODamaa BaaaleaacaWGUbaabeaakiabfI6aznaaDaaaleaacaaIXaGaaGymaa qaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH 7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+oaEaiaawIcacaGLPaaaaS qaaiaad6gacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGccaGG SaGaaGzbVlabfA6agnaabmaabaGaeqOVdGhacaGLOaGaayzkaaGaey ypa0ZaaabCaeaacqaHgpGAdaWgaaWcbaGaamOBaaqabaGccqqHOoqw daqhaaWcbaGaaGymaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkai aawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGa eqOVdGhacaGLOaGaayzkaaaaleaacaWGUbGaeyypa0JaaGymaaqaai abg6HiLcqdcqGHris5aOGaaiilaaaa@716E@

при α=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabg2 da9iaaicdaaaa@3BE1@ , a,b = 0,1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam yyaiaacYcacaWGIbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaaI WaGaaiilaiaaigdaaiaawUfacaGLDbaaaaa@420E@ , λ n =π n 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaakiabg2da9iabec8aWnaabmaabaGaamOBaiab gkHiTmaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@4312@ ;

при α=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabg2 da9iaaigdacaGGSaGaaGOmaaaa@3D4E@ , a,b = R 1 , R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam yyaiaacYcacaWGIbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaWG sbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkfadaWgaaWcbaGaaG OmaaqabaaakiaawUfacaGLDbaaaaa@442A@ , λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  удовлетворят уравнению Ψ 01 α λ n R 1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIWaGaaGymaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsb WaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGim aiaac6caaaa@4785@

Φ a =0, V a + αV a a ΛΦ a =0, V b =0, Φ b =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaeqabaGaeuOPdy 0aaeWaaeaacaWGHbaacaGLOaGaayzkaaGaeyypa0JaaGimaiaacYca aeaaceWGwbGbauaadaqadaqaaiaadggaaiaawIcacaGLPaaacqGHRa WkdaWcaaqaaiabeg7aHjaadAfadaqadaqaaiaadggaaiaawIcacaGL PaaaaeaacaWGHbaaaiabgkHiTiabfU5amjabfA6agnaabmaabaGaam yyaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaaabaGaamOvamaa bmaabaGaamOyaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaG zbVlqbfA6agzaafaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaGaeyyp a0JaaGimaiaac6caaaaa@5F66@

V ξ = n=1 v n Ψ 01 α λ n ξ ,Φ ξ = n=1 φ n Ψ 00 α λ n ξ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfadaqada qaaiabe67a4bGaayjkaiaawMcaaiabg2da9maaqahabaGaamODamaa BaaaleaacaWGUbaabeaakiabfI6aznaaDaaaleaacaaIWaGaaGymaa qaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOWaaeWaaeaacqaH 7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+oaEaiaawIcacaGLPaaaaS qaaiaad6gacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGccaGG SaGaaGzbVlabfA6agnaabmaabaGaeqOVdGhacaGLOaGaayzkaaGaey ypa0ZaaabCaeaacqaHgpGAdaWgaaWcbaGaamOBaaqabaGccqqHOoqw daqhaaWcbaGaaGimaiaaicdaaeaadaqadaqaaiabeg7aHbGaayjkai aawMcaaaaakmaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGa eqOVdGhacaGLOaGaayzkaaaaleaacaWGUbGaeyypa0JaaGymaaqaai abg6HiLcqdcqGHris5aOGaaiilaaaa@716C@

при α=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabg2 da9iaaicdaaaa@3BE1@ , a,b = 0,1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam yyaiaacYcacaWGIbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaaI WaGaaiilaiaaigdaaiaawUfacaGLDbaaaaa@420E@ , λ n =π n 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaakiabg2da9iabec8aWnaabmaabaGaamOBaiab gkHiTmaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@4312@ ;

при α=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabg2 da9iaaigdacaGGSaGaaGOmaaaa@3D4E@ , a,b = R 1 , R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaadmaabaGaam yyaiaacYcacaWGIbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaWG sbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkfadaWgaaWcbaGaaG OmaaqabaaakiaawUfacaGLDbaaaaa@442A@ , λ n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeU7aSnaaBa aaleaacaWGUbaabeaaaaa@3B55@  удовлетворят уравнению Ψ 10 α λ n R 1 =0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaaIXaGaaGimaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaWGsb WaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGim aiaac6caaaa@4785@

 

Выполненные построения остаются справедливыми и для моделей с учетом эффектов релаксации ( τ 0 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabes8a0naaBa aaleaacaaIWaaabeaakiabgcMi5kaaicdaaaa@3DB8@  ). В этом случае изменяется только второе равенство в (2.6), которое записывается так:

k=0 K τ 0 k k! k+1 Ψ τ τ k+1 + γ 2 ωΨ τ =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaqahabaWaaS aaaeaadaqadaqaaiabes8a0naaBaaaleaacaaIWaaabeaaaOGaayjk aiaawMcaamaaCaaaleqabaGaam4AaaaaaOqaaiaadUgacaGGHaaaam aalaaabaGaeyOaIy7aaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaa kiabfI6aznaabmaabaGaeqiXdqhacaGLOaGaayzkaaaabaGaeyOaIy RaeqiXdq3aaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaaaaaabaGa am4Aaiabg2da9iaaicdaaeaacaWGlbaaniabggHiLdGccqGHRaWkcq aHZoWzdaahaaWcbeqaaiaaikdaaaGccqaHjpWDcqqHOoqwdaqadaqa aiabes8a0bGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaaaaa@60E0@

При этом системы (2.1) и (3.1) не изменятся, и представление их решения в форме (2.2) и (3.2) сохраняется. Поэтому далее аналогичным образом получается результат в виде (2.10) и (3.4), с той лишь разницей, что коэффициенты γ A j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeo7aNjaadg eadaWgaaWcbaGaamOAaaqabaaaaa@3C09@  будут отличаться от тех, что получены при τ 0 =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabes8a0naaBa aaleaacaaIWaaabeaakiabg2da9iaaicdaaaa@3CF7@ . Таким образом, решение задачи Штурма–Лиувилля и в этом случае имеет вид, полученный в разд. 2 и 3.

6. ЗАКЛЮЧЕНИЕ

Основываясь на методе разделения переменных, дана постановка задачи Штурма–Лиувилля и найдены собственные функции для одномерного термоупругого оператора в декартовой, цилиндрической и сферической системах координат.

Показано, что:

  1. Собственные функции одномерного термоупругого оператора выражаются через известные тригонометрические, цилиндрические и сферические функции. В частности, следует отметить, что функции Ψ kl α λ n ξ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6aznaaDa aaleaacaWGRbGaamiBaaqaamaabmaabaGaeqySdegacaGLOaGaayzk aaaaaOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+o aEaiaawIcacaGLPaaaaaa@457A@  при α=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabg2 da9iaaigdacaGGSaGaaGOmaaaa@3D4E@  подробно описаны в справочнике [36], и с помощью них достаточно успешно решаются нестационарные задачи теплопроводности, упругости и несвязанной термоупругости (см. [34]).
  2. В отличие от задач теплопроводности (несвязанной термоупругости) задачи связанной термоупругости решаются аналитически только при определенных граничных условиях, вид которых определяется свойствами собственных функций, как например (3.7).

Последний пункт указывает на принципиальное различие в плане сложности решения начально-краевых задач для скалярных уравнений и начально-краевых задач для систем уравнений. Так, если задача Штурма–Лиувилля для волнового уравнения или уравнения теплопроводности (даже с учетом релаксации) свободно решается при краевых условиях 1-го, 2-го и 3-го рода (а также при их комбинациях) (см. [33], [34]), то уже одномерная задача термоупругости решается только для четырех определенных типов граничных условий (причем 3-е и 4-е граничное условие является комбинацией 1-го и 2-го), что существенно ограничивает класс задач, решаемых аналитически.

Отметим, что этот вопрос, на примере задач о дифракции цилиндрических и сферических волн, достаточно подробно обсуждался в работах [39], [40], где была доказана невозможность осуществления процедуры разделения пространственных переменных в многомерных задачах в цилиндрической системе координат в случае, когда на границе задаются нормальные напряжения. В настоящей статье показано, что в связанных задачах термоупругости этот эффект проявляется уже в одномерных задачах.

С другой стороны, выражение

V ξ + αV ξ ξ ΛΦ ξ ξΠ =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaeiaabaWaae WaaeaaceWGwbGbauaadaqadaqaaiabe67a4bGaayjkaiaawMcaaiab gUcaRmaalaaabaGaeqySdeMaamOvamaabmaabaGaeqOVdGhacaGLOa GaayzkaaaabaGaeqOVdGhaaiabgkHiTiabfU5amjabfA6agnaabmaa baGaeqOVdGhacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLiWoada WgaaWcbaGaeqOVdGNaeyicI4SaeuiOdafabeaakiabg2da9iaaicda aaa@5632@

в граничных условиях (3.9), (3.15)–(3.17) можно интерпретировать, как нормальную нагрузку на поверхности несжимаемого тела ( c 12 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadogadaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaaGimaaaa@3CD6@  в формуле (1.5)). Учитывая, что, ввиду малости упругих деформаций, относительное изменение объема упруго-деформируемого тела тоже невелико, можно использовать решения краевых задач с граничными условиями вида (3.9), (3.15)–(3.17) в качестве приближенных к решениям задач с заданной на поверхности нормальной нагрузкой вида (1.5).

 

[1] Работа выполнена при финансовой поддержке РНФ (грант MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugqbabaaaaaaaaapeGaa8NfHaaa@3A54@  23-21-00189), https://rscf.ru/project/23-21-00189/.

×

Sobre autores

A. Zemskov

Moscow Aviation Institute (National Research University); Institute of Mechanics, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: azemskov1975@mail.ru
Rússia, Volokolamskoe sh. 4, Moscow, 125993; Michurinsky prospect, 1, Moscow, 119192

D. Tarlakovskii

НИИ механики МГУ; МАИ

Email: tdvhome@mail.ru
Rússia, 119192 Москва, Мичуринский пр-т, 1; 125993 Москва, Волоколамское ш., 4

Bibliografia

  1. Еремеев В.С. Диффузия и напряжения. М.: Энергоатомиздат, 1984. 182 с.
  2. Князева А.Г. Введение в термодинамику необратимых процессов. Томск: Иван Федоров, 2014. 172 с.
  3. Nowacki W. Dynamical Problems of Thermodiffusion in Solids // Proc. Vib. Prob. 1974. V. 15. P. 105–128.
  4. Келлер И.Э., Дудин Д.С. Механика сплошной среды. Законы сохранения: учеб. Пособие. Пермь: Изд-во Пермского нац. исслед. политех. ун-та, 2022. 142 с.
  5. Формалев В.Ф. Теплоперенос в анизотропных твердых телах. Численные методы, тепловые волны, обратные задачи. М.: Физматлит, 2015. 280 с.
  6. Шамровский А.Д., Меркотан Г.В. Динамическая задача обобщенной термоупругости для изотропного полупространства // Восточно-Европейский ж. передовых технологий. 2011. Т. 3. № 7(51). С. 56–59.
  7. Карташов Э.М. Термодинамические аспекты термоупругости с учетом конечной скорости распространения тепла // Изв. РАН. Энергетика. 2004. № 4. С. 146.
  8. Ненахов Е.В., Карташов Э.М. Оценки температурных напряжений в моделях динамической термоупругости // Вестн. Московского гос. технического ун-та им. Н.Э. Баумана. Сер. Естественные науки. 2022. № 1(100). С. 88–106.
  9. Green A.E., Naghdi P.M. Thermoelasticity without energy dissipation // J. Elast. 1993. V. 31. P. 189–208.
  10. Quintanilla R. Moore-Gibson-Thompson thermoelasticity with two temperatures // Appl. Engng. Sci. 2020. V. 1. 100006. https://doi.org/10.1016/j.apples.2020.100006
  11. Abbas A.I. The effect of thermal source with mass diffusion in a transversely isotropic thermoelastic infinite medium // J. of Measurements in Engng. 2014. V. 2. No 4. P. 175–184.
  12. Abouelregal A.E., Marin M., Askar S.S. Generalized MGT Heat Transfer Model for an Electro-Thermal Microbeam Lying on a Viscous-Pasternak Foundation with a Laser Excitation Heat Source // Symmetry 2023. V. 15. No 4. P. 814.
  13. Abouelregal A., Alesemi M., Alfadil H. Thermoelastic reactions in a long and thin flexible viscoelastic cylinder due to non-uniform heat flow under the non-Fourier model with fractional derivative of two different orders // AIMS Mathematics. 2022. V. 7. № 5. P. 8510–8533.
  14. Bachher M., Sarkar N. Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer // Waves in Random and Complex Media. 2019. V. 29. № 4. P. 595–613.
  15. Patnaik S., Sidhardh S., Semperlotti F. Nonlinear thermoelastic fractional-order model of nonlocal plates: Application to postbuckling and bending response // Thin-Walled Structures. 2021. V. 164. 107809. https://doi.org/10.1016/j.tws.2021.107809
  16. Peng W., Ma Y., He T. Transient thermoelastic response of a size-dependent nanobeam under the fractional order thermoelasticity // ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2021. V. 101. No 10. e202000379. https://doi.org/10.1002/zamm.202000379
  17. Eringen A.C. Nonlocal Continuum Field Theories. New York: Springer, 2002.
  18. Das N., De S., Sarkar N. Reflection of plane waves in generalized thermoelasticity of type III with nonlocal effect // Math. Meth. Appl. Sci. 2020. V. 43. No 3. P. 1313–1336.
  19. Sarkar N., Mondal S., Othman M. I. A. Effect of the laser pulse on transient waves in a non-local thermoelastic medium under Green-Naghdi theory // Structur. Engineer. Mech. 2020. V. 74. No 4. P. 471–479.
  20. Земсков А.В., Тарлаковский Д.В. Моделирование механодиффузионных процессов в многокомпонентных телах с плоскими границами. М.: Физматлит, 2021. 288 с.
  21. Aouadi M. A generalized thermoelastic diffusion problem for an infinitely long solid cylinder // Inter. J. Math. and Math. Sci. 2006. V. 2006. P. 1–15. https://doi.org/10.1155/IJMMS/2006/25976
  22. Aouadi M. A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion // Inter. J. Solid. Structur. 2007. V. 44. P. 5711–5722.
  23. Atwa S.Y., Egypt Z. Generalized Thermoelastic Diffusion With Effect of Fractional Parameter on Plane Waves Temperature-Dependent Elastic Medium // J. Material. Chemic. Engineer. 2013. V. 1. Iss. 2. P. 55–74.
  24. Bhattacharya D., Kanoria M. The influence of two temperature generalized thermoelastic diffusion inside a spherical shell // Inter. J. Engineer. Tech. Res. (IJETR). 2014. V. 2. Iss. 5. P. 151–159.
  25. Bhattacharya D., Pal P., Kanoria M. Finite Element Method to Study Elasto-Thermodiffusive Response inside a Hollow Cylinder with Three-Phase-Lag Effect // Inter. J. Comput. Sci. Engineer. 2019. V. 7. Iss. 1. P. 148–156.
  26. Elhagary M.A. Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times // Acta Mech. 2011. V. 218. P. 205–215.
  27. Elhagary M.A. Generalized thermoelastic diffusion problem for an infinite medium with a Spherical Cavity // Int. J. Thermophys. 2012. V. 33. P. 172–183.
  28. Kumar R., Devi S. Deformation of modified couple stress thermoelastic diffusion in a thick circular plate due to heat sources // CMST. 2019. V. 25. No 4. P. 167–176.
  29. Olesiak Z.S., Pyryev Yu.A. A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder // Inter. J. Engineer. Sci. 1995. V. 33. No 6. P. 773–780.
  30. Shvets R.M. On the deformability of anisotropic viscoelastic bodies in the presence of thermodiffusion // J. Math. Sci. 1999. V. 97. No 1. P. 3830–3839.
  31. Xia R.H., Tian X.G., Shen Y.P. The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity // Inter. J. Engineer. Sci. 2009. V. 47. P. 669–679.
  32. Горшков А.Г., Медведский А.Л., Рабинский Л.Н., Тарлаковский Д.В. Волны в сплошных средах: Учеб. пособ.: Для вузов. М.: Физматлит, 2004. 472 с.
  33. Кошляков Н.С., Глинер Э.Б., Смирнов М.М. Дифференциальные уравнения математической физики. М.: Гос. изд-во физ.-мат. Литературы, 1962. 768 с.
  34. Карташов Э.М., Кудинов В.А. Аналитические методы теории теплопроводности и ее приложений. Изд. 4, перераб. и сущ. доп. URSS, 2018. 1080 с.
  35. Вестяк В.А., Земсков А.В., Тарлаковский Д.В., Федотенков Г.В. Математические основы термоупругости: Учебное пособие. М.: Изд-во МАИ, 2021. 92 с.
  36. Янке Е., Эмде Ф., Лёш Ф. Специальные функции: Формулы, графики, таблицы М.: Наука, 1964. 344 с.
  37. Владимиров В.С. Уравнения математической физики. Изд. 4-е. М.: Физматлит, 1981. 512 с.
  38. Бари Н.К. Тригонометрические ряды // При ред. участии П. Л. Ульянова. М.: Физматгиз, 1961. 936 с.
  39. Исраилов М.Ш. Сведение краевых задач динамической теории упругости к скалярным задачам для волновых потенциалов в криволинейных координатах // Изв. РАН МТТ. 2011. № 1. С. 131–136.
  40. Исраилов М.Ш. Разделение граничных условий для потенциалов на криволинейной границе в динамических задачах теории упругости // Докл. АН. 2010. Т. 435. № 6. С. 752–754.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».