Analysis of Mechanisms of Production Investment Stimulation in an Imperfect Capital Market Based on a Mathematical Model

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of renewed market investment in the Russian real economy is closely related to the business environment state in the imperfect capital market in Russia and to the assessment of the profitability of investment projects. Difficulties in determining profitability in an imperfect monetary and credit system are associated with the significant discrepancy between the interest rates on deposits and loans and can be overcome by applying the Cantor–Lippman approach, which makes it possible to calculate the profitability of a pool of investment projects available to an investor. From the point of view of a production owner, market investment depends on the state of the business environment and competes with investment in consumption. The problem arises of estimating the profitability threshold at which private market investment is preferred to private consumption. We propose an approach to the solution of this problem in terms of a mathematical model of investment behavior of a production owner in an imperfect capital market. The model is formalized as an infinite-horizon optimal control problem with a state constraint. The solution of the problem is based on constructing a viscosity solution of the Hamilton–Jacobi–Bellman equation. It is shown that the investment strategy of a production owner can depend substantially on the business environment state. Based on the results of this study, an explanation is proposed for the transition from recovery growth to stagnation in the Russian economy in late 2007, which was accompanied by recession of investment activities in the manufacturing sector.

About the authors

N. K. Obrosova

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences; Moscow Center of Fundamental and Applied Mathematics, Lomonosov Moscow State University; Moscow Institute of Physics and Technology (National Research University)

Email: nobrosova@ya.ru
119333, Moscow, Russia; 119992, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

A. A. Shananin

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences; Moscow Center of Fundamental and Applied Mathematics, Lomonosov Moscow State University; Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: alexshan@ya.ru
119333, Moscow, Russia; 119992, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

References

  1. Шананин А.А. Анализ финансового состояния инвестора на основе модели Кантора–Липмана // Тр. ИММ УрО РАН. 2020. Т. 26. № 1. С. 293–306.
  2. Петров А.А., Поспелов И.Г., Шананин А.А. Опыт математического моделирования экономики. М.: Энергоатомиздат, 1996.
  3. Петров А.А., Поспелов И.Г., Шананин А.А. От госплана к неэффективному рынку: математический анализ эволюции российских экономических структур. UK: The Edwin Mellen Press, 1999.
  4. Cantor D.G., Lipman S.A. Investment selection with imperfect capital markets // Econometrica. 1983. V. 51. № 4. P. 1121–1144.
  5. Cantor D.G., Lipman S.A. Optimal investment selection with a multitude of projects // Econometrica. 1995. V. 63. № 5. P. 1231–1240.
  6. Adler L., Gale D. Arbitrate and growth rate for riskless investments in a stationary economy // Mathematical F-inance. 1997. V. 7. № 1. P. 73–81.
  7. Sonin I.M. Growth rate, internal rates of return and turn pikes in an investment model // Economic Theory. 1996. V. 5. P. 383–400.
  8. Presman E.L., Sonin I.M. Growth rate, internal rates of return and financial bubbles. Moscow: CEMI Rus. Acad. Sci., 2000.
  9. Беленький В.З. Экономическая динамика: анализ инвестиционных проектов в рамках линейной модели Неймана–Гейла. М.: Рос. экон. шк., 2002.
  10. Ващенко М.П. Оценка доходности инвестиционных проектов в условиях неопределенности // Матем. моделирование. 2009. Т. 21. № 3. С. 18–30.
  11. Ващенко М.П., Шананин А.А. Оценка доходности пула инвестиционных проектов в модели оптимального инвестирования в непрерывном времени // Матем. моделирование. 2012. Т. 24. № 3. С. 70–86.
  12. Shananin A.A., Vashchenko M.P., Zhang Sh. Financial bubbles existence in the Cantor–Lippman model for continuous time // Lobachevskii J. Math. 2018. V. 39. № 7. P. 929–935.
  13. Шананин А.А. Математическое моделирование инвестиций на несовершенном рынке капитала // Тр. ИММ УрО РАН. 2019. Т. 25. № 4. С. 265–274.
  14. Шананин А.А. Анализ финансового состояния инвестора на основе модели Кантора–Липмана // Тр. ИММ УрО РАН. 2020. Т. 26. № 1. С. 293–306.
  15. Ramsey F.P. A mathematical theory of savings // Econ. J. 1928. № 38. P. 543–559.
  16. Obrosova N.K., Shananin A.A., Spiridonov A.A. A Model of investment behavior of enterprise owner in an imperfect capital market // Lobachevskii J. Math. 2022. V. 43. № 4. P. 1023–1036.
  17. Рудева А.В., Шананин А.А. Синтез управления в модифицированной модели Рамсея с учетом ограничения ликвидности. // Дифференц. уравнения. 2009. Т. 45. № 12. С. 1799–1803.
  18. Тарасенко М.В., Трусов Н.В., Шананин А.А. Математическое моделирование экономического положения домашних хозяйств в России // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 6. С. 1034–1056.
  19. Кларк Ф. Оптимизация и негладкий анализ. М.: Наука, 1988.
  20. Bardi M. Capuzzo-Dolcetta I. Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Boston: Birkhauser, 1997.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (53KB)
3.

Download (60KB)
4.

Download (40KB)
5.

Download (34KB)
6.

Download (167KB)
7.

Download (50KB)
8.

Download (57KB)

Copyright (c) 2023 Н.К. Обросова, А.А. Шананин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».