Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 69, № 11 (2024)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

КАТАЛИЗАТОРЫ ОКИСЛЕНИЯ СО НА ОСНОВЕ СЛОЖНЫХ АНТИМОНАТОВ СИСТЕМЫ La2O3-CoO-Sb2O5

Егорышева А.В., Голодухина С.В., Разворотнева Л.С., Либерман Е.Ю., Чистяков А.В., Наумкин А.В., Эллерт О.Г.

Аннотация

Однофазные образцы соединений, реализующиеся в системе La2O3-CoO-Sb2O5, синтезированыпутем термического разложения нитратов, цитратным методом, соосаждением с гидротермальной обработкой осадка и последующим отжигом. Изучены их каталитические свойства в реакцииокисления CO. Установлено, что наибольшей активностью при низких температурах и стабильностью при циклических испытаниях обладает катализатор LaCo1/3Sb5/3O6со структурой розиаита,полученный методом соосаждения с гидротермальной обработкой осадка и последующим отжигом. В присутствии этого катализатора 90%-ная конверсия СО зафиксирована при 265∘C. Методами РФЭС, ТПД-O2и ИК-спектроскопии выполнено исследование поверхности LaCo1/3Sb5/3O6.Показано, что модель Ленгмюра-Хиншелвуда является наиболее вероятным механизмом каталитического окисления СО, которое сопровождается окислительно-восстановительными процессами Co3+ ↔Co2+ и Sb3+ ↔Sb5+ с участием поверхностно-активных форм кислорода и вакансий. При этом ионы сурьмы в данном процессе играют роль донора электронов, увеличенная концентрация которых способствует ускорению процессов адсорбции и формированию активных формкислорода на поверхности. Установлено отсутствие загрязнения поверхности образца в процессекатализа, что исключает потребность в его регенерации.
Журнал неорганической химии. 2024;69(11):1499-1513
pages 1499-1513 views

НИЗКОТЕМПЕРАТУРНЫЙ СИНТЕЗ ВЫСОКОДИСПЕРСНОГО АЛЮМИНАТА БАРИЯ

Козлова Л.О., Ворошилов И.Л., Иони Ю.В., Ивакин Ю.Д., Козерожец И.В., Васильев М.Г.

Аннотация

Разработан новый подход к низкотемпературному синтезу высокодисперсного алюмината бария вермикулярной морфологии с заданными характеристиками (насыпная плотность от 0.015 г/см3,средний размер частиц в диапазоне 15-87 нм). Методика синтеза включает последовательную термическую обработку до 1200∘C концентрированного водного раствора BaCl2, Al(NO3)3, (NH2)2CO и C6H8O7. С помощью физико-химических методов исследования: ИК-спектроскопии, рентгено-фазового анализа, просвечивающей и сканирующей электронной микроскопии, а также химического анализа охарактеризованы основные этапы синтеза BaAl2O4.
Журнал неорганической химии. 2024;69(11):1514-1521
pages 1514-1521 views

ВЛИЯНИЕ МЕТОДА СИНТЕЗА НА СОСТАВ, МОРФОЛОГИЮ И КАТАЛИТИЧЕСКИЕ СВОЙСТВА НАНОРАЗМЕРНОГО ФЕРРИТА ВИСМУТА

Томина Е.В., Куркин Н.А., Чередниченко И.С., Лукин А.Н.

Аннотация

Методами спрей-пиролиза и сжигания цитратного геля осуществлен синтез нанокристаллического феррита висмута. Образцы BiFeO3исследованы методами рентгеновской дифракции, инфракрасной спектроскопии, растровой и просвечивающей электронной микроскопии, энергодисперсионной рентгеновской спектроскопии. Проведено тестирование цитратного и спрей-пиролизного образцов феррита висмута как катализаторов фентоноподобной реакции окислительной деструкции метилового оранжевого. Установлено влияние метода синтеза на состав и морфологию частиц феррита висмута, а также на каталитическую активность. Кинетика окислительной деструкции красителя в присутствии образцов феррита висмута удовлетворительно описывается моделью псевдопервого порядка, константа скорости реакции в случае BiFeO3, синтезированного методом спрей-пиролиза, составляет 0.0072 мин-1, для цитратного BiFeO3 она несколько меньше - 0.0049 мин-1. Степень деструкции метилового оранжевого за 120 мин без катализатора составляет 7%, в присутствии спрей-пиролизного феррита висмута - 62%, в присутствии цитратного феррита висмута - 51%.
Журнал неорганической химии. 2024;69(11):1522-1534
pages 1522-1534 views

СИНТЕЗ И ИССЛЕДОВАНИЕ СУБМИКРОННОЙ КЕРАМИКИ ГЕКСАФЕРРИТА БАРИЯ, ПОЛУЧЕННОЙ ЖИДКОФАЗНЫМ НИЗКОТЕМПЕРАТУРНЫМ СПЕКАНИЕМ НАНОЧАСТИЦ BaFe12O19

Миронович А.Ю., Костишин В.Г., Аль-Хафаджи Х.И., Тимофеев А.В., Савченко Е.С., Риль А.И.

Аннотация

Проведен синтез керамических образцов гексаферрита бария BaFe12O19 с высокими значениями коэрцитивной силы. Методом гидротермального синтеза получен нанопорошок BaFe12O19, характеризующийся коэрцитивной силой Hc=445 кА/м. Его спекание проводили при низкой температуре (900∘C) для сохранения зерен в однодоменном состоянии. Для осуществления спекания притакой низкой температуре к гексаферриту добавляли B2O3 или Bi2O3. Изучено влияние количестваи типа добавки на фазовый состав, микроструктуру и магнитные свойства спеченного гексаферрита. Показано, что при использовании Bi2O3 (в форме 0.5, 1 или 3 мас. % Bi(NO3)3) после спеканияне происходит изменения фазового состава, в то время как B2O3(в форме 0.5, 1 или 3 мас. % H3BO3)приводит к частичной трансформации гексаферрита в гематит α-Fe2O3. Обнаружено, что с ростомконцентрации Bi2O3 или B2O3 средний размер зерен BaFe12O19 увеличивается, но не превышает критический размер однодоменности. Это обеспечивает высокие значения Hc спеченных образцов (370-420 кА/м), по которым они превосходят большинство известных марок незамещенных гексаферритов.
Журнал неорганической химии. 2024;69(11):1535-1546
pages 1535-1546 views

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

ХРОМОФОРЫ ДИИМИН-NiII-КАТЕХОЛАТ НА ОСНОВЕ ЛИГАНДНЫХ СИСТЕМ ФЕНАНТРОЛИНОВОГО РЯДА: МОЛЕКУЛЯРНОЕ СТРОЕНИЕ, ПЕРЕНОС ЗАРЯДА ЛИГАНД-ЛИГАНД, ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ

Пашанова К.И., Якушев И.А., Лазарев Н.М., Золотухин А.А., Ковылина Т.А., Климашевская А.В., Арсеньев М.В., Сулимова О.В., Дороватовский П.В., Пискунов А.В.

Аннотация

Получена серия хромофорных комплексов NiII(3,6-Cat)(Phen) (1), NiII(3,6-Cat)(DPQ) (2) и NiII(3,6-Cat)(DPPZ) (3), где 3,6-Cat - 3,6-ди-трет-бутил-катехолатный дианион, на основе 1,10-фенантролина (Phen), дипиридо[3,2-d:2’,3’-f]хиноксалина (DPQ) и дипиридо[3,2-a:2’,3’-c]феназина (DPPZ). Хромофоры 1-3имеют незначительно искаженное планарное строение координационного полиэдра и претерпевают фотоиндуцированный внутримолекулярный перенос заряда лиганд-лиганд (ВЗМО донор →НСМО акцептор), демонстрируя высокоинтенсивное поглощение света видимого и ближнего ИК-диапазонов. Комплексы 1-3характеризуются высокой термостабильностью и полнотой перехода в паровую фазу в условиях пониженного давления. Соединение 1 обладает высокой летучестью, что делает его подходящим кандидатом для дальнейшего тестирования при изготовлении оптоэлектрических устройств по технологии “испарение-осаждение”.
Журнал неорганической химии. 2024;69(11):1547-1564
pages 1547-1564 views

СИНТЕЗ И СПЕКТРАЛЬНЫЕ СВОЙСТВА ГАЛОГЕНЗАМЕЩЕННЫХ Cu(II)-ТЕТРАФЕНИЛПОРФИРИНОВ

Звездина С.В., Чижова Н.В., Мамардашвили Н.Ж.

Аннотация

Проведено исчерпывающее галогенирование β-положений Cu(II)-5,10,15,20-тетра(2,6-дифторфенил)порфирина с использованием N-бромсукцинимида и N-хлорсукцинимида в диметилформамиде. При взаимодействии Cu(II)-5,10,15,20-тетра(2,3,4,5,6-пентафторфенил)порфиринас N-хлорсукцинимидом в диметилформамиде синтезирован Cu(II)-β-октахлор(2,3,4,5,6-пентафторфенил)порфирин. С помощью реакции комплексообразования β-октабром-5,10,15,20-тетра(2,6-дифторфенил)порфирина, β-октахлор-5,10,15,20-тетра(2,6-дифторфенил)порфиринаиβ-октахлор-5,10,15,20-тетра(2,3,4,5,6-пентафторфенил)порфирина с солями меди в диметилформамиде в мягких условиях получены соответствующие комплексы меди(II). Изучена кинетика координации β-октабром-5,10,15,20-тетра(2,6-дифторфенил)порфирина с хлоридом меди в диметилформамиде. Рассчитаны кинетические параметры реакции. Синтезированные соединения идентифицированы методами электронной абсорбционной, 1H ЯМР-спектроскопии,масс-спектрометрии, элементного анализа. Для ряда комплексов меди приведены рентгеновские дифрактограммы.
Журнал неорганической химии. 2024;69(11):1565-1573
pages 1565-1573 views

КАРБОКСИЛАТЫ НЕОДИМА (НЕОДЕКАНОАТ И 3,5,5-ТРИМЕТИЛГЕКСАНОАТ) ДЛЯ РАЗРАБОТКИ Nd-СОДЕРЖАЩЕГО ЖИДКОГО ОРГАНИЧЕСКОГО СЦИНТИЛЛЯТОРА

Новикова Г.Я., Немерюк А.М., Моргалюк В.П., Моисеева A.А., Локшин Б.В., Янович Е.А.

Аннотация

Рассмотрен синтез карбоксилатов неодима (неодеканоата и 3,5,5-триметилгексаноата) и их применение для разработки Nd-содержащих жидких органических сцинтилляторов. Карбоксилаты неодима получены одностадийным (3,5,5-триметилгексаноат) и двухстадийным синтезом (неодеканоат). Состав полученных соединений подтвержден с помощью ИК-спектроскопии, элементного анализа и метода MALDI-TOF MS. Для введения карбоксилатов неодима в жидкий органический сцинтиллятор предложено использовать дополнительный растворитель - трибутилфосфат. Показано, что световыход сцинтиллятора при его использовании выше, чем без него, и составляет >60% вплоть до концентрации неодима 12 г/л.
Журнал неорганической химии. 2024;69(11):1574-1582
pages 1574-1582 views

ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

СИНТЕЗ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ТИТАНАТА ЭРБИЯ ПРИ 2-1900 K

Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Гавричев К.С.

Аннотация

Синтез титаната эрбия выполнен совместным осаждением гидроксидов эрбия и титана с последующим высокотемпературным отжигом. Определены температурные интервалы последовательности формирования кристаллической структуры типа пирохлора. Методами релаксационной, адиабатической и дифференциальной сканирующей калориметрии выполнены измерения изобарной теплоемкости титаната эрбия в интервале температур 2-1870 K. На основе сглаженных значений теплоемкости рассчитаны энтропия и приращение энтальпии в области 0-1900 K, оценен вкладаномалии Шоттки при температурах до 300 K и рассчитана энергия Гиббса образования титанатаэрбия при 298.15 K.
Журнал неорганической химии. 2024;69(11):1583-1598
pages 1583-1598 views

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА СЛОЖНЫХ ОКСИДОВ RbTe1.5W0.5O6 И Rb0.95Nb1.375Mo0.625O5.79 СО СТРУКТУРОЙ β-ПИРОХЛОРА

Маркин А.В., Смирнова Н.Н., Горюнова П.Е., Фукина Д.Г., Сулейманов Е.В.

Аннотация

В настоящей работе теплоемкость сложных оксидов RbTe1.5W0.5O6 и Rb0.95Nb1.375Mo0.625O5.79 со структурой β-пирохлора впервые исследована методами адиабатической вакуумной и дифференциальной сканирующей калориметрии в интервале температур 6-640 K. По полученным экспериментальным данным рассчитаны стандартные термодинамические функции: теплоемкость Cop,энтальпия [H∘(T)-H∘(0)], абсолютная энтропия S∘(T)и энергия Гиббса [G∘(T)-H∘(0)] в области температур от T→0 до 640 K. Выполнена мультифрактальная обработка низкотемпературной(T<50 K) теплоемкости изученных соединений и установлена цепочечно-слоистая топология их структуры.
Журнал неорганической химии. 2024;69(11):1599-1613
pages 1599-1613 views

ФИЗИКОХИМИЯ РАСТВОРОВ

ВЛИЯНИЕ СТРОЕНИЯ ФОСФОРИЛ-И КАРБОНИЛСОДЕРЖАЩИХ ПОДАНДОВ НА ЭКСТРАКЦИЮ ЛАНТАНОИДОВ(III) ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ В ПРИСУТСТВИИ ИОННОЙ ЖИДКОСТИ -бис[(ТРИФТОРМЕТИЛ)СУЛЬФОНИЛ]ИМИДА 1-БУТИЛ-3-МЕТИЛИМИДАЗОЛИЯ

Туранов А.Н., Карандашев В.К., Харламов А.В., Бондаренко Н.А.

Аннотация

Изучено межфазное распределение ионов лантаноидов(III) между водными растворами HNO3и растворами тетрабутилдигликольамида Bu2C(O)CH2OCH2C(O)NBu2(1), соединений R2P(O)CH2OCH2C(O)NBu2, где R = Bu (2), Ph (3), и фосфорилсодержащих подандов R2P(O)CH2OCH2P(O)R12, где R = R1= Bu (4); R = Bu, R1= Ph (5);R=R1= Ph (6), в 1,2-дихлорэтане и ионной жидкости - бис[(трифторметил)сульфонил]имиде 1-бутил-3-метилимидазолия. Установлено, что экстракция ионов металлов значительно возрастает в присутствии ионной жидкости в органической фазе. Определена стехиометрия извлекаемых комплексов, рассмотрено влияние концентрации HNO3 в водной фазе и строения экстрагента на эффективность извлечения ионов металлов в органическую фазу.
Журнал неорганической химии. 2024;69(11):1614-1621
pages 1614-1621 views

РАЗДЕЛЕНИЕ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СРЕДНЕТЯЖЕЛОЙ ГРУППЫ СИНЕРГЕТНЫМИ СМЕСЯМИ НИТРАТА МЕТИЛТРИ-н-ОКТИЛАММОНИЯ И АММОНИЕВОЙ СОЛИ ДИ-2-ЭТИЛГЕКСИЛФОСФОРНОЙ КИСЛОТЫ

Королева Е.О., Бояринцева Е.В., Степанов С.И.

Аннотация

Изучено разделение редкоземельных элементов среднетяжелой группы по линии Gd/Tb методом жидкостной экстракции из низкокислотных нитратных растворов. В качестве экстрагента использована синергетная смесь нитрата метилтри-н-октиламмония и аммониевой соли ди-2-этилгексилфосфорной кислоты. Методом изомолярных серий определена область синергетной экстракции. Показано, что при экстракции смесью экстрагентов и индивидуальной аммониевойсолью ди-2-этилгексилфосфорной кислоты наблюдается образование геля при концентрациях соли >0.25 моль/л. В области устойчивости системы максимальный коэффициент разделения по линии Gd/Tb составляет >3.8. Для предотвращения образования геля использовали н-октанол и три-н-бутилфосфат в качестве модификатора.
Журнал неорганической химии. 2024;69(11):1622-1630
pages 1622-1630 views

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ

СИНТЕЗ Ti2AlC В РАСПЛАВЕ KBr: ВЛИЯНИЕ ТЕМПЕРАТУРЫ И СООТНОШЕНИЯ КОМПОНЕНТОВ

Симоненко Е.П., Нагорнов И.А., Мокрушин А.С., Сапронова В.М., Горобцов Ф.Ю., Симоненко Н.П., Кузнецов Н.Т.

Аннотация

МАХ-фазы различного состава в последнее время находят все более широкое применение благодаря своей слоистой структуре и свойствам, характерным для керамических материалов и металлов. Поэтому большое значение имеет разработка легко масштабируемых методов получения данных соединений, характеризующихся повышенной фазовой чистотой. В работе изучено влияние на состав и свойства такой МАХ-фазы, как Ti2AlC, условий ее получения с применением защитного расплава солей (на примере KBr), в частности, соотношений исходных реагентов (n(Ti):n(Al):n(C)),температуры и длительности термической обработки. Установлено, что при температуре 1100∘C наибольший выход Ti2AlC (94.4%) достигается при мольном соотношении n(Ti):n(Al):n(C) =2:1.1:0.9. Показано, что при температурах синтеза от 900 до 1100∘C содержание целевой МАХ-фазы изменяется незначительно (от 94 до 96%), максимальное содержание Ti2AlC установлено приполучении образца при температуре 1000∘C. Изучено также влияние температуры синтеза (900,1100 и 1200∘C) на микроструктуру, термическое поведение в токе воздуха и величину работы выхода электрона.
Журнал неорганической химии. 2024;69(11):1631-1642
pages 1631-1642 views

БИМЕТАЛЛИЧЕСКИЕ Pt-Ag-КАТАЛИЗАТОРЫ, НАНЕСЕННЫЕ НА МЕЗОПОРИСТЫЙ ОКСИД КРЕМНИЯ МСМ-41, В РЕАКЦИИ ВОССТАНОВЛЕНИЯ 4-НИТРОФЕНОЛА

Савельева А.С., Евдокимова Е.В., Мамонтов Г.В.

Аннотация

Синтезирован мезопористый МСМ-41 с удельной площадью поверхности 1134 м2/г. На его основеметодом пропитки по влагоемкости приготовлены нанесенные моно- и биметаллические катализаторы Pt-Ag с различным соотношением металлов. Методами РФА, ЭСДО показано, что после восстановительной высокотемпературной обработки катализаторы Pt-Ag на поверхности сформировались контактирующие Pt и Ag металлические наночастицы. Методом ТПВ-H2 показано повышение реакционной способности биметаллических катализаторов по сравнению с монометаллическими за счет взаимодействия AgOx- и PtOy-центров. Катализаторы были исследованы в реакции восстановления 4-нитрофенола боргидридом натрия. Установлено значительное увеличение скорости восстановления 4-нитрофенола на биметаллических катализаторах за счет синергетического эффекта Pt и Ag.
Журнал неорганической химии. 2024;69(11):1643-1653
pages 1643-1653 views

ДОПИРОВАННЫЕ ТИТАНАТЫ ЛИТИЯ И ИХ КОМПОЗИТЫ С УГЛЕРОДНЫМИ НАНОТРУБКАМИ КАК АНОДЫ ДЛЯ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ

Стенина И.А., Кулова Т.Л., Ярославцев А.Б.

Аннотация

Титанаты лития Li4+xTi5–xMxO12 (M = Sc, Ga, Al, Cr; x=0, 0.05, 0.1, 0.15) и их композиты с углеродными нанотрубками синтезированы золь-гель методом и охарактеризованы с помощью рентгенофазового анализа, сканирующей электронной микроскопии, импедансной и 7Li MAS-ЯМР-спектроскопии; проведено их электрохимическое тестирование. Показано, что допирование трехвалентными катионами приводит к уменьшению подвижности ионов лития в Li4+xTi5–xMxO12, чтоуказывает на доминирование переноса лития по вакансиям в этих материалах. Наилучшие электрохимические характеристики демонстрируют композиты Li4+xTi5–xMxO12 с углеродными нанотрубками.
Журнал неорганической химии. 2024;69(11):1654-1664
pages 1654-1664 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».