SYNTHESIS OF PERHALOGENATED MONOHYDROXY DERIVATIVES OF THE closo-DECABORATE ANION [2-B10X9OH]2– (X = Cl, Br)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An efficient two-stage method has been developed for the synthesis of perhalogenated monohydroxy derivatives of the closo-decaborate anion with the composition [2-B10X9OH]2– (X = Cl, Br). The method involves complete halogenation of the boron framework in the initial DMF-containing derivative [2-B10H9OCHNMe2] by its reaction with sulfuryl chloride (SO2Cl2) or elemental bromine (Br2), followed by hydrolysis of the obtained perhalogenated derivatives [2-B10X9OCHNMe2] (X = Cl, Br) with hydrazine monohydrate (N2H4·H2O). This synthetic approach allows for the production of the target compounds with high yield (80–85%) and high purity, as confirmed by a range of physicochemical analysis methods (multinuclear NMR spectroscopy on 11B, 1H, and 13C nuclei, IR spectroscopy, and elemental analysis). The structures of the [2-B10X9OCHNMe2] and [2-B10X9OH]2– anions were determined by single-crystal X-ray diffraction analysis.

About the authors

A. V Golubev

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: golalekseival@mail.ru
Moscow, Russia

V. A Mantsireva

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; D.I. Mendeleev University of Chemical Technology of Russia

Moscow, Russia

A. S Kubasov

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

A. Yu Bykov

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

K. Yu Zhizhin

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

N. T Kuznetsov

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

References

  1. Knapp C. // Compr. Inorg. Chem. II (Second Ed.) From Elem. to Appl. 2013. V. 1. P. 651. https://doi.org/10.1016/B978-0-08-097774-4.00125-X
  2. Kim K.C., Reed C.A., Long G.S. et al. // J. Am. Chem. Soc. 2002. V. 124. No 26. P. 7662. https://doi.org/10.1021/ja0259990
  3. Kessler M., Knapp C., Sagave V. et al. // Inorg. Chem. 2010. V. 49. No 11. P. 5223. https://doi.org/10.1021/ic100337k
  4. Kessler M., Knapp C., Zogaj A. // Organometallics. 2011. V. 30. No 14. P. 3786. https://doi.org/10.1021/om2003333
  5. Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2023. V. 68. No 6. P. 657. https://doi.org/10.1134/S0036023623600314
  6. Dymon J., Wibby R., Kleingardner J. et al. // Dalton Trans. 2008. No 22. P. 2999. https://doi.org/10.1039/b802374c
  7. Zhou N., Zhao G., Dong K. et al. // RSC Adv. 2012. V. 2. No 26. P. 9830. https://doi.org/10.1039/c2ra21700g
  8. Stoyanov E.S., Hoffmann S.P., Juhasz M. et al. // J. Am. Chem. Soc. 2006. V. 128. No 10. P. 3160. https://doi.org/10.1021/ja0585811
  9. Avelar A., Tham F.S., Reed C.A. // Angew. Chem. - Int. Ed. 2009. V. 48. No 19. P. 3491. https://doi.org/10.1002/anie.200900214
  10. Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
  11. Oligomers D., Kultyshev R.G., Liu J. et al. // Society. 2002. V. 124. No 11. P. 1291.
  12. Kultyshev R.G., Liu J., Meyers E.A. et al. // Inorg. Chem. 2000. V. 39. No 15. P. 3333. https://doi.org/10.1021/ic000198o
  13. Bayer M.J., Hawthorne M.F. // Inorg. Chem. 2004. V. 43. P. 2018.
  14. Peymann T., Knobler C.B., Frederick Hawthorne M. // Inorg. Chem. 2000. V. 39. No 6. P. 1163. https://doi.org/10.1021/ic991105+
  15. Bragin V.I., Sivaev I.B., Bregadze V.I. et al. // J. Organomet. Chem. 2005. V. 690. No 11. P. 2847. https://doi.org/10.1016/JJORGANCHEM.2005.01.053
  16. Bondarev O., Khan A.A., Tu X. et al. // J. Am. Chem. Soc. 2013. V. 135. No 35. P. 13204. https://doi.org/10.1021/ja4069613
  17. John K.C., Kaczmarczyk A., Soloway A.H. // J. Med. Chem. 1969. V. 12. No 1. P. 54. https://doi.org/10.1021/jm00301a015
  18. Zhdanov A.P., Voinova V.V., Klyukin I.N. et al. // Russ. J. Coord. Chem. 2019. V. 45. No 8. P. 563. https://doi.org/10.1134/S1070328419080098
  19. Trofimenko S. // J. Am. Chem. Soc. 1966. V. 88. No 9. P. 1899. https://doi.org/10.1021/ja00961a010
  20. Kamin A.A., Juhasz M.A. // Inorg. Chem. 2020. V. 59. No 1. P. 189. https://doi.org/10.1021/acs.inorgchem.9b03037
  21. Axtell J.C., Saleh L.M.A., Qian E.A. et al. // Inorg. Chem. 2018. V. 57. No 5. P. 2333. https://doi.org/10.1021/acs.inorgchem.7b02912
  22. Zhang Y., Liu J., Duttwyler S. // Eur. J. Inorg. Chem. 2015. V. 2015. No 31. P. 5158. https://doi.org/10.1002/ejic.201501009
  23. Assaf K.I., Ural M.S., Pan F. et al. // Angew. Chem. - Int. Ed. 2015. V. 54. No 23. P. 6852. https://doi.org/10.1002/anie.201412485
  24. Nelson Y.A., Irshad A., Kim S. et al. // Inorg. Chem. 2023. V. 62. No 37. P. 15084. https://doi.org/10.1021/acs.inorgchem.3c01992
  25. Holub J., El Anwar S., Jelinek T. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. No 38. P. 4499. https://doi.org/10.1002/ejic.201700651
  26. El Anwar S., Holub J., Tok O. et al. // J. Organomet. Chem. 2018. V. 865. P. 189. https://doi.org/10.1016/j.jorganchem.2018.02.050
  27. Jenne C., Kirsch C. // Dalton Trans. 2015. V. 44. No 29. P. 13119. https://doi.org/10.1039/c5dt01633a
  28. El Anwar S., Assaf K.I., Begaj B. et al. // Chem. Commun. 2019. V. 55. No 91. P. 13669. https://doi.org/10.1039/c9cc07678f
  29. Bruker, SAINT, v. 8.40A, Bruker AXS Inc., Madison, WI, 2019
  30. Krause L., Herbst-Immer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. No 1. P. 3. https://doi.org/10.1107/S1600576714022985
  31. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  32. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. No 2. P. 339. https://doi.org/10.1107/S0021889808042726
  33. Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. No 14. P. 2089. https://doi.org/10.1134/S0036023610140019
  34. Golubev A.V., Kubasov A.S., Turyshev E.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. No 9. P. 1333. https://doi.org/10.1134/S0036023620090041
  35. Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Inorg. Chem. 2021. V. 60. No 12. P. 8592. https://doi.org/10.1021/acs.inorgchem.1c00516
  36. Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Dokl. Chem. 2021. V. 500. No 2. P. 205. https://doi.org/10.1134/S0012500821100025

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).