SYNTHESIS OF PERHALOGENATED MONOHYDROXY DERIVATIVES OF THE closo-DECABORATE ANION [2-B10X9OH]2– (X = Cl, Br)
- Authors: Golubev A.V1, Mantsireva V.A1,2, Kubasov A.S1, Bykov A.Y.1, Zhizhin K.Y.1, Kuznetsov N.T1
-
Affiliations:
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- D.I. Mendeleev University of Chemical Technology of Russia
- Issue: Vol 70, No 11 (2025)
- Pages: 1486-1499
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ogarev-online.ru/0044-457X/article/view/378178
- DOI: https://doi.org/10.7868/S3034560X25110074
- ID: 378178
Cite item
Abstract
Keywords
About the authors
A. V Golubev
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: golalekseival@mail.ru
Moscow, Russia
V. A Mantsireva
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; D.I. Mendeleev University of Chemical Technology of RussiaMoscow, Russia
A. S Kubasov
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
A. Yu Bykov
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
K. Yu Zhizhin
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
N. T Kuznetsov
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
References
- Knapp C. // Compr. Inorg. Chem. II (Second Ed.) From Elem. to Appl. 2013. V. 1. P. 651. https://doi.org/10.1016/B978-0-08-097774-4.00125-X
- Kim K.C., Reed C.A., Long G.S. et al. // J. Am. Chem. Soc. 2002. V. 124. No 26. P. 7662. https://doi.org/10.1021/ja0259990
- Kessler M., Knapp C., Sagave V. et al. // Inorg. Chem. 2010. V. 49. No 11. P. 5223. https://doi.org/10.1021/ic100337k
- Kessler M., Knapp C., Zogaj A. // Organometallics. 2011. V. 30. No 14. P. 3786. https://doi.org/10.1021/om2003333
- Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2023. V. 68. No 6. P. 657. https://doi.org/10.1134/S0036023623600314
- Dymon J., Wibby R., Kleingardner J. et al. // Dalton Trans. 2008. No 22. P. 2999. https://doi.org/10.1039/b802374c
- Zhou N., Zhao G., Dong K. et al. // RSC Adv. 2012. V. 2. No 26. P. 9830. https://doi.org/10.1039/c2ra21700g
- Stoyanov E.S., Hoffmann S.P., Juhasz M. et al. // J. Am. Chem. Soc. 2006. V. 128. No 10. P. 3160. https://doi.org/10.1021/ja0585811
- Avelar A., Tham F.S., Reed C.A. // Angew. Chem. - Int. Ed. 2009. V. 48. No 19. P. 3491. https://doi.org/10.1002/anie.200900214
- Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
- Oligomers D., Kultyshev R.G., Liu J. et al. // Society. 2002. V. 124. No 11. P. 1291.
- Kultyshev R.G., Liu J., Meyers E.A. et al. // Inorg. Chem. 2000. V. 39. No 15. P. 3333. https://doi.org/10.1021/ic000198o
- Bayer M.J., Hawthorne M.F. // Inorg. Chem. 2004. V. 43. P. 2018.
- Peymann T., Knobler C.B., Frederick Hawthorne M. // Inorg. Chem. 2000. V. 39. No 6. P. 1163. https://doi.org/10.1021/ic991105+
- Bragin V.I., Sivaev I.B., Bregadze V.I. et al. // J. Organomet. Chem. 2005. V. 690. No 11. P. 2847. https://doi.org/10.1016/JJORGANCHEM.2005.01.053
- Bondarev O., Khan A.A., Tu X. et al. // J. Am. Chem. Soc. 2013. V. 135. No 35. P. 13204. https://doi.org/10.1021/ja4069613
- John K.C., Kaczmarczyk A., Soloway A.H. // J. Med. Chem. 1969. V. 12. No 1. P. 54. https://doi.org/10.1021/jm00301a015
- Zhdanov A.P., Voinova V.V., Klyukin I.N. et al. // Russ. J. Coord. Chem. 2019. V. 45. No 8. P. 563. https://doi.org/10.1134/S1070328419080098
- Trofimenko S. // J. Am. Chem. Soc. 1966. V. 88. No 9. P. 1899. https://doi.org/10.1021/ja00961a010
- Kamin A.A., Juhasz M.A. // Inorg. Chem. 2020. V. 59. No 1. P. 189. https://doi.org/10.1021/acs.inorgchem.9b03037
- Axtell J.C., Saleh L.M.A., Qian E.A. et al. // Inorg. Chem. 2018. V. 57. No 5. P. 2333. https://doi.org/10.1021/acs.inorgchem.7b02912
- Zhang Y., Liu J., Duttwyler S. // Eur. J. Inorg. Chem. 2015. V. 2015. No 31. P. 5158. https://doi.org/10.1002/ejic.201501009
- Assaf K.I., Ural M.S., Pan F. et al. // Angew. Chem. - Int. Ed. 2015. V. 54. No 23. P. 6852. https://doi.org/10.1002/anie.201412485
- Nelson Y.A., Irshad A., Kim S. et al. // Inorg. Chem. 2023. V. 62. No 37. P. 15084. https://doi.org/10.1021/acs.inorgchem.3c01992
- Holub J., El Anwar S., Jelinek T. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. No 38. P. 4499. https://doi.org/10.1002/ejic.201700651
- El Anwar S., Holub J., Tok O. et al. // J. Organomet. Chem. 2018. V. 865. P. 189. https://doi.org/10.1016/j.jorganchem.2018.02.050
- Jenne C., Kirsch C. // Dalton Trans. 2015. V. 44. No 29. P. 13119. https://doi.org/10.1039/c5dt01633a
- El Anwar S., Assaf K.I., Begaj B. et al. // Chem. Commun. 2019. V. 55. No 91. P. 13669. https://doi.org/10.1039/c9cc07678f
- Bruker, SAINT, v. 8.40A, Bruker AXS Inc., Madison, WI, 2019
- Krause L., Herbst-Immer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. No 1. P. 3. https://doi.org/10.1107/S1600576714022985
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. No 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. No 14. P. 2089. https://doi.org/10.1134/S0036023610140019
- Golubev A.V., Kubasov A.S., Turyshev E.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. No 9. P. 1333. https://doi.org/10.1134/S0036023620090041
- Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Inorg. Chem. 2021. V. 60. No 12. P. 8592. https://doi.org/10.1021/acs.inorgchem.1c00516
- Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Dokl. Chem. 2021. V. 500. No 2. P. 205. https://doi.org/10.1134/S0012500821100025
Supplementary files


