Экстракционно-пиролитический синтез и люминесцентные свойства боратов La0.95Eu0.05BO3 : Sm и La0.95Eu0.05(BO2)3 : Sm

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Ортобораты La0.95–хEu0.05SmхBO3 и метабораты La0.95–хEu0.05Smх(BO2)3 (х = 0.025, 0.05, 0.075, 0.1) получены в оптимальных условиях экстракционно-пиролитическим методом при меньших по сравнению с известными способами температуре и времени. При увеличении концентрации иона Sm3+ объем элементарной ячейки в La0.95–хEu0.05SmхBO3 (структурный тип арагонита) и La0.95–хEu0.05Smх(BO2)3 (моноклинная модификация α-типа) уменьшается. Наибольшие изменения в спектрах возбуждения люминесценции соединений в зависимости от концентрации Sm3+ наблюдаются в области 360–450 нм, где проявляются полосы переходов как иона Eu3+, так и иона Sm3+. При возбуждении люминесценции в полосе максимального поглощения иона Sm3+eх = 404 нм) интенсивность люминесценции совместно допированных La0.925Eu0.05Sm0.025(BO2)3 и La0.925Eu0.05Sm0.025BO3 возрастает, что можно объяснить возможностью эффективной передачи поглощенной энергии ионом Sm3+ иону Eu3+.

Об авторах

Н. И. Стеблевская

Институт химии ДВО РАН

Email: steblevskaya@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159

М. В. Белобелецкая

Институт химии ДВО РАН

Автор, ответственный за переписку.
Email: steblevskaya@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159

Список литературы

  1. Wei H.W., Shao L.M., Jiao H. // Opt. Mater. 2018. V. 75. P. 442. https://doi.org/10.1016/j.optmat.2017.10.011
  2. Шмурак С.З., Кедров В.В., Киселев А.П. и др. // Физика тв. тела. 2022. Т. 64. № 1. С. 105.
  3. Halefoglu Y.Z. // Appl. Radiat. Isotopes. 2019. V. 148. № 1. P. 40. https://doi.org/10.1016/j.apradiso.2019.03.011
  4. Yang R., Sun X., Jiang P. et al. // J. Solid State Chem. 2018. V. 258. P. 212. https://doi.org/10.1016/j.jssc.2017.10.022
  5. Beihoucif R., Velazquez M., Platevin O. et al. // Opt. Mater. 2017. V. 73. P. 658. https://doi.org/10.1016/j.optmat.2017.09.026
  6. Xu Y.W., Chen J., Zhang H. et al. // J. Mater. Chem. 2020. V. 8. P. 247. https://doi.org/10.1039/c9tc05311e
  7. Ma C., Li X., Zhang M. et al. // Ceram. Int. 2018. V. 44. № 15. P. 18462. https://doi.org/10.1016/j.ceramint.2018.07.064
  8. Omanwar S.K., Sawala. N.S. // Appl. Phys. A. 2017. V. 123. № 11. P. 673. https://doi.org/10.1007/s00339-017-1268-8
  9. Yang R., Qi Y., Gao Y. et al. // J. Lumin. 2020. V. 219. P. 116880. https://doi.org/10.1016/j.jlumin.2019.116880
  10. Górny A., Sołtys M., Pisarska J. et al. // J. Rare Earths. 2019. V. 37. № 11. P. 1145. https://doi.org/10.1016/j.jre.2019.02.005
  11. Gopi S., Jose S.K., Sreeja E. et al. // J. Lumin. 2017. V. 192. P. 1288. https://doi.org/10.1016/j.jlumin.2017.09.009
  12. Steudel F., Ahrens B., Schweizer S. // J. Lumin. 2017. V. 181. P. 31. https://doi.org/10.1016/j.jlumin.2016.08.066
  13. Soltys M., Pisarska J., Leśniak M. et al. // J. Mol. Struct. 2018. V. 1163. P. 418. https://doi.org/10.1016/j.molstruc.2018.03.021
  14. GaoY., Jiang P., Gao W. et al. // J. Solid State Chem. 2019. V. 278. P. 120915. https://doi.org/10.1016/j.jssc.2019.120915
  15. Zhu Q., Fan Z., Li S. et al. // J. Asian Ceram. Soc. 2020. V. 8. № 2. P. 542. https://doi.org/10.1080/21870764.2020.1761084
  16. Abaci O.G.H., Esenturk O., Yılmaz A. et al. // Opt. Mater. 2019. V. 98. P. 109487. https://doi.org/10.1016/j.optmat.2019.109487
  17. Zhang J., Yang M., Jin H. et al. // Mater. Res. Bull. 2012. V. 47. № 2. P. 247. https://doi.org/10.1016/j.materresbull.2011.11.015
  18. Шмурак С.З., Кедров В.В., Киселев А.П. и др. // Физика тв. тела. 2019. Т. 61. № 1. С. 123.
  19. Холькин А.И., Патрушева Т.Н. // Хим. технология. 2015. Т. 16. № 10. С. 576.
  20. Стеблевская Н.И., Медков М.А., Ярусова С.Б. Получение и свойства функциональных материалов на основе оксидов редкоземельных и редких металлов. Владивосток: ВГУЭС, 2021. 348 с.
  21. Стеблевская Н.И., Белобелецая М.В., Медков М.А. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 440. https://doi.org/10.31857/S0044457X21040218
  22. Стеблевская Н.И., Белобелецкая М.В., Медков М.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 8. С. 1134.
  23. Szczeszak A., Kubasiewicz K., Lis S. // Opt. Mater. 2013. V. 35. № 6. P. 1297. https://doi.org/10.1016/j.optmat.2013.02.001
  24. Sohn Y. // Ceram. Int. 2014. V. 40. № 1. Part B. P. 2467.
  25. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A. Theory and Applications in Inorganic Chemistry. N.Y.: John Wiley and Sons, 2009.
  26. Blasse G, Grabmaier B.C. Luminescent materials. Berlin–Heidelberg: Springer-Verlag., 1994. 233 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (351KB)
3.

Скачать (298KB)
4.

Скачать (408KB)
5.

Скачать (71KB)

© Н.И. Стеблевская, М.В. Белобелецкая, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».