Extraction-Pyrolytic Synthesis and Luminescent Properties of Borates La0.95Eu0.05BO3 : Sm and La0.95Eu0.05(BO2)3 : Sm

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Orthoborates La0.95–хEu0.05SmхBO3 and metaborates La0.95 – хEu0.05Smх(BO2)3 (х = 0.025, 0.05, 0.075, 0.1) have been obtained under optimal conditions by extraction-pyrolytic method at lower temperature and shorter time as compared with the known methods. Increase in Sm3+ ion concentration leads to decrease of unit cell volume in La0.95 – хEu0.05SmхBO3 (aragonite structural type) and La0.95 – хEu0.05Smх(BO2)3 (monoclinic modification of α type). The larges changes in luminescence excitation spectra of the compounds depending on Sm3+ concentration is observed in 360–450 nm region, which includes the bands of transitions for both Eu3+ and Sm3+ ions. On luminescence excitation in the band of maximal absorption of Sm3+ ion (λeх = 404 nm), luminescence intensity of cooperatively doped La0.925Eu0.05Sm0.025(BO2)3 and La0.925Eu0.05Sm0.025BO3 increases, which can be explained by the possibility of efficient transfer of absorbed energy from Sm3+ to Eu3+ ion.

作者简介

N. Steblevskaya

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: steblevskaya@ich.dvo.ru
690022, Vladivostok, Russia

M. Belobeletskaya

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: steblevskaya@ich.dvo.ru
690022, Vladivostok, Russia

参考

  1. Wei H.W., Shao L.M., Jiao H. // Opt. Mater. 2018. V. 75. P. 442. https://doi.org/10.1016/j.optmat.2017.10.011
  2. Шмурак С.З., Кедров В.В., Киселев А.П. и др. // Физика тв. тела. 2022. Т. 64. № 1. С. 105.
  3. Halefoglu Y.Z. // Appl. Radiat. Isotopes. 2019. V. 148. № 1. P. 40. https://doi.org/10.1016/j.apradiso.2019.03.011
  4. Yang R., Sun X., Jiang P. et al. // J. Solid State Chem. 2018. V. 258. P. 212. https://doi.org/10.1016/j.jssc.2017.10.022
  5. Beihoucif R., Velazquez M., Platevin O. et al. // Opt. Mater. 2017. V. 73. P. 658. https://doi.org/10.1016/j.optmat.2017.09.026
  6. Xu Y.W., Chen J., Zhang H. et al. // J. Mater. Chem. 2020. V. 8. P. 247. https://doi.org/10.1039/c9tc05311e
  7. Ma C., Li X., Zhang M. et al. // Ceram. Int. 2018. V. 44. № 15. P. 18462. https://doi.org/10.1016/j.ceramint.2018.07.064
  8. Omanwar S.K., Sawala. N.S. // Appl. Phys. A. 2017. V. 123. № 11. P. 673. https://doi.org/10.1007/s00339-017-1268-8
  9. Yang R., Qi Y., Gao Y. et al. // J. Lumin. 2020. V. 219. P. 116880. https://doi.org/10.1016/j.jlumin.2019.116880
  10. Górny A., Sołtys M., Pisarska J. et al. // J. Rare Earths. 2019. V. 37. № 11. P. 1145. https://doi.org/10.1016/j.jre.2019.02.005
  11. Gopi S., Jose S.K., Sreeja E. et al. // J. Lumin. 2017. V. 192. P. 1288. https://doi.org/10.1016/j.jlumin.2017.09.009
  12. Steudel F., Ahrens B., Schweizer S. // J. Lumin. 2017. V. 181. P. 31. https://doi.org/10.1016/j.jlumin.2016.08.066
  13. Soltys M., Pisarska J., Leśniak M. et al. // J. Mol. Struct. 2018. V. 1163. P. 418. https://doi.org/10.1016/j.molstruc.2018.03.021
  14. GaoY., Jiang P., Gao W. et al. // J. Solid State Chem. 2019. V. 278. P. 120915. https://doi.org/10.1016/j.jssc.2019.120915
  15. Zhu Q., Fan Z., Li S. et al. // J. Asian Ceram. Soc. 2020. V. 8. № 2. P. 542. https://doi.org/10.1080/21870764.2020.1761084
  16. Abaci O.G.H., Esenturk O., Yılmaz A. et al. // Opt. Mater. 2019. V. 98. P. 109487. https://doi.org/10.1016/j.optmat.2019.109487
  17. Zhang J., Yang M., Jin H. et al. // Mater. Res. Bull. 2012. V. 47. № 2. P. 247. https://doi.org/10.1016/j.materresbull.2011.11.015
  18. Шмурак С.З., Кедров В.В., Киселев А.П. и др. // Физика тв. тела. 2019. Т. 61. № 1. С. 123.
  19. Холькин А.И., Патрушева Т.Н. // Хим. технология. 2015. Т. 16. № 10. С. 576.
  20. Стеблевская Н.И., Медков М.А., Ярусова С.Б. Получение и свойства функциональных материалов на основе оксидов редкоземельных и редких металлов. Владивосток: ВГУЭС, 2021. 348 с.
  21. Стеблевская Н.И., Белобелецая М.В., Медков М.А. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 440. https://doi.org/10.31857/S0044457X21040218
  22. Стеблевская Н.И., Белобелецкая М.В., Медков М.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 8. С. 1134.
  23. Szczeszak A., Kubasiewicz K., Lis S. // Opt. Mater. 2013. V. 35. № 6. P. 1297. https://doi.org/10.1016/j.optmat.2013.02.001
  24. Sohn Y. // Ceram. Int. 2014. V. 40. № 1. Part B. P. 2467.
  25. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A. Theory and Applications in Inorganic Chemistry. N.Y.: John Wiley and Sons, 2009.
  26. Blasse G, Grabmaier B.C. Luminescent materials. Berlin–Heidelberg: Springer-Verlag., 1994. 233 p.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (351KB)
3.

下载 (298KB)
4.

下载 (408KB)
5.

下载 (71KB)

版权所有 © Н.И. Стеблевская, М.В. Белобелецкая, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».