Quantum chemical study of the reaction of N,O-dimethylcarbamate with methylamine monomer and dimer
- Авторлар: Samuilov A.Y.1, Kozhanova E.P.1, Samuilov Y.D.1
-
Мекемелер:
- Kazan National Research Technological University
- Шығарылым: Том 99, № 2 (2025)
- Беттер: 205-215
- Бөлім: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- ##submission.dateSubmitted##: 19.05.2025
- ##submission.dateAccepted##: 19.05.2025
- ##submission.datePublished##: 20.05.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/292411
- DOI: https://doi.org/10.31857/S0044453725020052
- EDN: https://elibrary.ru/DEEWIP
- ID: 292411
Дәйексөз келтіру
Аннотация
Reactions of N,O-dimethylcarbamate with methylamine monomer and dimer as a model for the polyurea preparation are studied by B3LYP and M06 quantum-chemical methods. Both a one-step interaction mechanism and a two-step route with an intermediate formed containing a tetracoordinated carbon atom are considered. The latter route is unlikely since the formation of the intermediate is characterized by small values of the equilibrium constants. Reactions involving the methylamine dimer are more favorable kinetically and thermodynamically. Kinetic preference of reactions with methylamine dimer participation is due to its increased donor and acid-base properties as compared to its monomer. The thermodynamic preference of interaction with methylamine dimer is due to a higher entropy of transformation as compared to the reaction with its monomer.
Толық мәтін

Авторлар туралы
A. Samuilov
Kazan National Research Technological University
Email: ysamuilov@yandex.ru
Ресей, Kazan
E. Kozhanova
Kazan National Research Technological University
Email: ysamuilov@yandex.ru
Ресей, Kazan
Ya. Samuilov
Kazan National Research Technological University
Хат алмасуға жауапты Автор.
Email: ysamuilov@yandex.ru
Ресей, Kazan
Әдебиет тізімі
- Shojaei B., Najafi M., Yazdanbakhsh A. et al. // Polym. Adv. Technol. 2021. V.32. № 8. P. 2797. https://doi.org/10.1002/pat.5277
- Wang Y., Ding L., Lin J. et al. // Polymers. 2024. V. 16. № 3. P. 440. https://doi.org/10.3390/polym16030440
- Leventis N. // Polymers. 2022. V. 14. № 5. P. 969. https://doi.org/10.3390/polym14050969
- Zhang Z., Qian L., Cheng J. et al. // Chem. Mater. 2023. V. 35. № 4. P. 1806. https://doi.org/10.1021/acs.chemmater.2c03782
- Zhang Z., Qian L., Huang G. et al. // Adv. Funct. Mater. 2024. V. 34. № 4. P. 2310603. https://doi.org/10.1002/adfm.202310603
- Polyurea: Synthesis, Properties, Composites, Production, and Applications / Eds. P. Pasbakhsh, D. Mohotti, K. Palaniandy et al. Amsterdam: Elsevier, 2023. 430 p.
- Tripathi M., Parthasarathy S., Roy P.K. // J. Appl. Polym. Sci. 2020. V. 137. № 16. P. 48573. https://doi.org/10.1002/app.48573
- Sonnenschein M.F. Polyurethanes: science, technology, markets, and trends. Hoboken: Wiley, 2021. 492 p.
- Isocyanates: Sampling, Analysis, and Health Effects / Eds. J. Lesage, I. DeGraff, R. Danchik. West Conshohocken: ASTM Int., 2001. 133 p.
- MDI and TDI: safety, health and the environment: a source book and practical guide / Eds. D.C. Allport, D.S. Gilbert, S.M. Outterside. Chichester: Wiley, 2003. 438 p.
- Santana J.S., Cardoso E.S., Triboni E.R. et al. // Polymers. 2021. V. 13. № 24. P. 4393. https://doi.org/10.3390/polym13244393
- Pyo S.H., Park J.H., Chang T.S. et al. // CRGSC. 2017. V. 5. P. 61. https://doi.org/10.1016/j.cogsc.2017.03.012
- Montero R., Lamas I., León I. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. № 6. P. 3098. https://doi.org/10.1039/C8CP06416D
- Pérez C., León I., Lesarri A. et al. // Ang. Chem. 2018. V. 130. № 46. P. 15332. https://doi.org/10.1002/anie.201808602
- Malloum A., Conradie J. // J. Mol. Liq. 2021. V. 336. P. 116199. https://doi.org/10.1016/j.molliq.2021.116199
- Brutschy B., Bisling P., Rühl E. et al. // Z. Phys. D – Atoms Molec. Clusters. 1987. V. 5. P. 217. https://doi.org/10.1007/BF01436927
- Zhang B.B., Kong X.T., Jiang S.K. et al. // Chin. J. Chem. Phys. 2017. V. 30. № 6. P. 691. https://doi.org/10.1021/acs.jpca.7b08096
- Mishra S., Nguyen H.Q., Huang Q.R. et al. // J. Chem. Phys. 2020. V. 153. № 19. P. 194301. https://doi.org/10.1063/5.0025778
- Huang Q.R., Endo T., Mishra S. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. № 6. P. 3739. https://doi.org/10.1039/d0cp05745b
- Hayama S., Wasse J.C., Skipper N.T. et al. // J. Phys. Chem. B. 2001. V. 106. № 1. P. 11. https://doi.org/10.1080/002689700 10020023
- Kosztolányi T., Bakó I., Pálinkás G. // J. Chem. Phys. 2003. V. 118. № 10. P. 4546. https://doi.org/10.1063/1.1543143
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
- Becke A.D. // J. Chem. Phys. 1992. V. 96. № 3. P. 2155. https://doi.org/10.1063/1.462066
- Becke A.D. // J. Chem. Phys. 1992. V. 97. № 12. P. 9173. https://doi.org/10.1063/1.463343
- Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648. https://doi.org/10.1063/1.464913
- Zhao Y., Truhlar D.C. // Theor. Chem. Acc. 2008. V. 120. P. 215. https://doi.org/10.1007/s00214-007-0310-x
- Sholl D.S., Steckel J.A. Density functional theory: a practical introduction / Hoboken: John Wiley & Sons. 2023. 224 p.
- Zhao Y., Truhlar D.C. // Acc. Chem. Res. 2008. V. 41. № 2. P. 157. https://doi.org/10.1021/ar700111a
- Keeler J., Wothers P. Chemical Structure and Reactivity: an Integrated Approach. Oxford: Oxford University Press. 2014. 877 p.
- Maksic Z.B., Kovacevic B., Vianello R. // Chem. Rev. 2012. V. 112. № 10. P. 5240. https://doi.org/10.1021/cr100458v
- Cabaleiro-Lago E.M., Rodrı́guez-Otero J. // J. Mol. Struct.: THEOCHEM. 2002. V. 586. № 1–3. P. 225. https://doi.org/10.1016/S0166-1280(02)00068-4
- Mishra S., Nguyen H.Q., Huang Q.R. et al. // J. Chem. Phys. 2020. V. 153. № 19. P. 194301. https://doi.org/10.1063/5.0025778
- Zipse H., Wang L.H., Houk K.N. // Liebigs Ann. Chem. 1996. V. 1996. № 10. P. 1511. https://doi.org/10.1002/jlac.199619961004
- Wang L.H., Zipse H. // Liebigs Ann. Chem. 1996. V. 1996. № 10. P. 1501. https://doi.org/10.1002/jlac.199619961003
- Kakuchi R., Fukasawa K., Kikuchi M. et al. // Macromolecules. 2021. V. 54. № 1. P. 364. https://doi.org/10.1021/acs.macromol.0c02078
- Zabalov M.V., Levina M.A., Krasheninnikov V.G. et al. // Polymer Sci. Ser. B. 2023. V. 65. № 4. P. 467. https://doi.org/10.1134/S1560090423701063
- Zabalov M.V., Tiger R.P., Berlin A.A. // Russ. Chem. Bull. 2012. V. 61. № 3. P. 518. https://doi.org/10.1007/s11172-012-0076-8
- Fox J.M., Dmitrenko O., Liao L.A. et al. // J. Org. Chem. 2004. V. 69. № 21. P. 7317. https://doi.org/10.1021/jo049494z
- Lawal M.M., Govender T., Maguire G.E. et al. // J. Mol. Model. 2016. V. 22. P. 235. https://doi.org/10.1007/s00894-016-3084-z
- Costa P., Pilli R., Pinheiro S. et al. The Chemistry of Carbonyl Compounds and Derivatives. London: RSC, 2022. 814 p.
- Smith M.B. Organic Chemistry: An Acid-Base Approach. Boca Raton: CRC Press, 2023. 726 p.
- Aue D.H., Webb H.M., Bowers M.T. // J. Am. Chem. Soc. 1976. V. 98. № 2. P. 311. https://doi.org/10.1021/ja00418a001
- Radisic D., Xu S., Bowen Jr.K.H. // Chem. Phys. Lett. 2002. V. 354. № 1–2. P. 9. https://doi.org/10.1016/S0009-2614(01)01470
- Hunter E.P., Lias S.G. // JPCRD. 1998. V. 27. № 3. P. 413. https://doi.org/10.1063/1.556018
- Kozhanova E.P., Samuilov Y.D., Samuilov A.Y. // Theor. Chem. Acc. 2023. V. 142. № 12. P. 132. https://doi.org/10.1007/s00214-023-03074-w
- Samuilov A.Y., Balabanova F.B., Samuilov Y.D. // Comp. Theor. Chem. 2014. V. 1049. P. 7. https://doi.org/10.1016/j.comptc.2014.09.010
- Samuilov A.Y., Balabanova F.B., Samuilov Y.D. // Comp. Theor. Chem. 2015. V. 1067. P. 33. https://doi.org/10.1016/j.comptc.2015.05.004
- Díaz N., Suárez D., Sordo T.L. // Eur. J. Org. Chem. 2001. V. 2001. № 4. P. 793. https://doi.org/10.1002/1099–0690(200102)2001:4<793:: AID-EJOC793>3.0.CO;2-Z
- Ehlers J.E., Rondan N.G., Huynh L.K. et al. // Macromolecules. 2007. V. 40. № 12. P. 4370. https://doi.org/10.1021/ma070423m
- Said R.B., Kolle J.M., Essalah K. et al. // ACS omega. 2020. V. 5. № 40. P. 26125. https://doi.org/10.1021/acsomega.0c03727
- Alvaro C.E.S., Nudelman N.S. // Int. J. Chem. Kinet. 2010. V. 42. № 12. P. 735. https://doi.org/10.1002/kin.20523
- Raspoet G., Nguyen M.T., Kelly S. et al. // J. Org. Chem. 1998. V. 63. № 26. P. 9669. https://doi.org/10.1021/jo980642t
Қосымша файлдар
