МЕТАЛЛОКОМПЛЕКСЫ 3-(ХИНОЛИН-2-ИЛМЕТИЛЕН)ИЗОИНДОЛИН-1-ОНА: СИНТЕЗ, ИССЛЕДОВАНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК ЭКСПЕРИМЕНТАЛЬНЫМИ И ТЕОРЕТИЧЕСКИМИ МЕТОДАМИ, ЭЛЕКТРОКАТАЛИТИЧЕСКИЕ СВОЙСТВА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Взаимодействием 3-(хинолин-2-илметилен)изоиндолин-1-она с солями металлов синтезированы его комплексы состава 1:1 с Zn(II), Co(III), Cu(II) и Ni(II). Их состав и строение подтверждены масс-спектрометрией, колебательной и ЯМР 1Н спектроскопией. На основании расчетов DFT установлено, что положения полос в колебательных спектрах комплексов зависят от их геометрического строения. С использованием расчетов TD-DFT выполнено отнесение полос поглощения в электронных спектрах поглощения синтезированных соединений к определенным электронным переходам. Комплексы кобальта и меди обладают каталитическими свойствами в реакции электровосстановления кислорода.

Об авторах

Р. А Новиков

ФГБОУ ВО "Ивановский государственный химико-технологический университет"

Иваново, Россия

Т. А Румянцева

ФГБОУ ВО "Ивановский государственный химико-технологический университет"

ORCID iD: 0000-0002-4110-0572
Иваново, Россия

В. В Александрийский

ФГБОУ ВО "Ивановский государственный химико-технологический университет"

ORCID iD: 0000-0002-7986-6573
Иваново, Россия

Н. Е Галанин

ФГБОУ ВО "Ивановский государственный химико-технологический университет"

Email: nik-galanin@yandex.ru
ORCID iD: 0000-0001-6117-167X
Иваново, Россия

Список литературы

  1. Treibs A., Kreuzer F.-H. // Lieb. Ann. Chem. 1968. V. 718. № 1. P. 208. doi: 10.1002/jlac.19687180119.
  2. Loudet A., Burgess K. // Chem. Rev. 2007. V. 107. № 11. P. 4891. doi: 10.1021/cr078381n.
  3. Schmitt A., Hinkeldey B., Wild M., Jung G. // J. Fluoresc. 2009. V. 19. № 7. P. 755. doi: 10.1007/s10895-008-0446-7.
  4. Молчанов Е.Е., Марфин Ю.С., Ксенофонтов А.А., Румянцев Е.В. // Изв. ВУЗов. Химия и хим. технол. 2019. Т. 62. № 12. С. 13. doi: 10.6060/ivkkt.20196212.6017.
  5. Parhi A.K., Kung M.-P., Ploessl K., Kung H.F. // Tetrahedron Lett. 2008. V. 49. № 21. P. 3395. doi: 10.1016/j.tetlet.2008.03.130.
  6. Wood T.E., Thompson A. // Chem. Rev. 2007. V. 107. № 5. P. 1831. doi: 10.1021/cr050052c.
  7. Baudron S.A. // Dalton Trans. 2020. V. 49. № 19. P. 6161. doi: 10.1039/D0DT00884B.
  8. Singh R.S., Paitandi R.P., Gupta R.K., Pandey D.S. // Coord. Chem. Rev. 2020. V. 414. art. N213269. doi: 10.1016/j.ccr.2020.213269.
  9. Bumagina N.A., Ksenofontov A.A., Bocharov P.S., et al. // J. Photochem. Photobiol. A: Chem. 2024. V. 454. Art. № 115687. doi: 10.1016/j.jphotochem.2024.115687.
  10. Guski S., Albrecht Markus, Willms T., et al. // Chem. Commun. 2017. V. 53. № 22. P. 3213. doi: 10.1039/C7CC00672A.
  11. Scharf A.B., Zheng S.L., Betleya T.A. // Dalton Trans. 2021. V. 50. № 19. P. 6418. doi: 10.1039/D1DT00945A.
  12. Baudron S.A. // Dalton Trans. 2013. V. 42. № 21. P. 7498. doi: 10.1039/C3DT50493J.
  13. Nabasov A.A., Koptyaev A.I., Usoltsev S.D., Rumyantseva T.A., Galanin N.E. // Macroheterocycles. 2022. V. 15. P. 128. doi: 10.6060/mhc224262g.
  14. Nabasov A.A., Rumyantseva T.A., Koptyaev A.I., Galanin N.E. // Dyes Pigm. 2023. V. 219. art. N111523. doi: 10.1016/j.dyepig.2023.111523.
  15. Набасов А.А., Румянцева Т.А., Александрийский В.В., Галанин Н.Е. // ЖОХ. 2023. Т. 93. № 12. С. 1867.
  16. Mayorova E.I., Rumyantseva T.A., Bazanov M.I., Galanin N.E. // Russ. J. Gen. Chem. 2023. V. 93. № 8. P. 1751. doi: 10.1134/S1070363223070162.
  17. Adamo C., Vincenzo B. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158. doi: 10.1063/1.478522.
  18. Rappoport D., Furche F. // J. Chem. Phys. 2010. V. 133. № 13. 134105. doi: 10.1063/1.3484283.
  19. Granovsky A.A. Firefly, V. 8.2.0 http://classic.chem.msu.su/gran/gamess/index.html
  20. Andrienko G.A. // Chemcraft, V. 1.8. http://www.chemcraftprog.com
  21. Sakshi M.M., Meenakshi S.K., Nagarajaprakash R. // J. Phys.: Conf. Ser. 2022. V. 2267. art. N012076. doi: 10.1088/1742-6596/2267/1/012076.
  22. Li C., Wurst K., Feng, Y., Krautler // Monatsh. Chem. 2016. V. 147. № 6. P. 1031. doi: 10.1007/s00706-016-1748-0.
  23. Thomas K.E., Desbois N., Conradie J., et al. // RSC Adv. 2020. V. 10. № 1. P. 533. doi: 10.1039/c9ra09228e.
  24. Asaoka M., Kitagawa Y., Teramoto R., et al. // Polyhedron. 2017. Vol. 136. P. 113. doi: 10.1016/j.poly.2017.01.058.
  25. Kaur G., Ravikanth M. // Dalton Trans. 2022. V. 51. № 16. P. 6399. doi: 10.1039/D2DT00563H.
  26. Teeuwen P.C.P., Melissari Z., Senge M.O., Williams R.M. // Molecules. 2022. V. 27. № 20. P. 6967. doi: 10.3390/molecules27206967.
  27. Hewat T.E., Yellowlees L.J., Robertson N. // Dalton Trans. 2014. V. 43. № 10. P. 4127. doi: 10.1039/C3DT53334D.
  28. Филимонов Д.А., Алексеева С.В., Базанов М.И. и др. // Макротерециклы. 2018. T. 11. № 1. C. 52. doi: 10.6060/mhc151204b.
  29. Shan W., Desbois N., Pacquelet S et al. // Inorg. Chem. 2019. V. 58. № 12. P. 7677. doi: 10.1021/acs.inorgchem.8b03006.
  30. Wang Y., Xue Z., Dong Y., Zhu W. // Polyhedron. 2015. V. 102. № 12. P. 578. doi: 10.1016/j.poly.2015.10.020.
  31. Mahmood Z., Rehmat N., Ji S., et al. // Chem: Eur. J. 2020. V. 26. № 65. P. 14912. doi: 10.1002/chem.202001907.
  32. Paitandi R.P., Singh R.S., Mukhopadhyay S., et al. // Dalton Trans. 2017. V. 46. № 16. P. 5420. doi: 10.1039/C7DT00107J.
  33. Румянцева Т.А., Березина Н.М., Базанов М.И., Галанин Н.Е. // ZOX. 2024. T. 94. № 8. C. 896. doi: 10.31857/S0044460X24080031.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).