Квантовая эволюция и резонанс в простой одноканальной модели

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Задача об эволюции системы в одномерном потенциале с резонансом формы рассмотрена численно на регулярной сетке с элиминируемым краем. Отмечено, что этот подход позволяет рассматривать задачу о стоке вероятности через границу сетки в рамках полностью L2-техники. Для гамильтониана с модельным потенциалом Бэйна с чисто непрерывным спектром проведено численное моделирование эволюции различных начальных состояний. Показано, что состояния, наиболее долгоживущие в прямом временном смысле, отвечают L2-резонансам, т. е. полюсам аналитического продолжения резольвенты, решениям задачи Зигерта и т. п. Отмечено, что временные границы неэкспоненциального распада состояний общего положения оказываются значительно шире предложенных ранее в литературе и лишь эволюция состояний, приготовленных в соответствии с параметрами L2-резонансов, может иметь полностью экспоненциальный характер.

Full Text

Restricted Access

About the authors

Т. Ю. Михайлова

Институт общей и неорганической химии им. Н. С. Курнакова РАН

Author for correspondence.
Email: tttat@yandex.ru
Russian Federation, Москва

References

  1. Julve J., de Urries F.J. //J.Phys.A. 2010. V.43.P.175301.
  2. Gamow G. // Z. Angew.Phys. 1928. V.51. P. 204.
  3. Wang S.M., Nazarewicz W., Volya A. et al. // Phys.Rev.Research. 2023. V.5. P. 023183. doi: 10.1103/PhysRevResearch.5.023183
  4. Luo S., Zhang Z. // Lett.Math.Phys. 2005. V.71. P. 1. doi /10.1007/s11005-004-5095-4
  5. Garcia-Calderon G., Riquer V., Romo R. // J.Phys.A. 2001. V.34. P. 4155.
  6. Reed M., Simon B. Methods of Modern Mathematical Physics, V.3, 4, Academic Press Inc. 1978.
  7. Siegert A.J.F. // Phys.Rev. 1939. V.56. P. 750.
  8. Hazi A.U., Taylor H.S. // Phys.Rev.A. 1970. V.1. P. 1109.
  9. Михайлова Т.Ю., Пупышев В.И. // Опт. спектр. 1999. Т. 87. C.35.
  10. Mikhailova T.Yu, Pupyshev V.I. // Rus. J. Phys. Chem.A. 2000. V. 74. P. 30.
  11. Bain R.A., Bardsley J.N., Junker B.R. et al .//J.Phys.B. 1974 V.7. P. 2189.
  12. Li S., Wang L., Liu X.J. et al // Chin.Phys.Lett. 2008. V.25. P. 1255.
  13. Goldberger M.L., Watson K.M. // Phys. Rev. 1964.V. 136. P.B1472.
  14. Крылов Н.С., Фок В.Α. // ЖЭТФ. 1947. Т. 17. С. 93.
  15. Crank J., Nicolson P. // Proc. Camb. Phil. Soc. 1947. V. 43. P. 50. doi.org/10.1017/S0305004100023197.
  16. Peshkin M., Volya A, Zelevinsky V. // Europhys. Lett. 2014. V. 107, N. 4, P. 40001. doi.org/10.1209/0295-5075/107/40001.
  17. García-Calderón G., Romo R. // Phys.Rev.A. 2019. V. 100. P. 032121. doi: 10.1103/physreva.100.032121.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bain potential U(x) = 7.5x2exp(–x) on a uniform grid. The grey dashed line shows the position of the resonance level (2). The abscissa axis is the coordinate in AU, the ordinate axis is the energy in AU.

Download (36KB)
3. Fig. 2. Wave function of the resonance state (2) in the Bain potential. The abscissa axis is the coordinate in AU.

Download (88KB)
4. Fig. 3. Various initial states (a) and SP(t) for them (b). In the left panel, the potential is shown by the thick black line, and the eigenfunction corresponding to this potential, used as the initial state, is shown by the gray solid line. The curves in the right panel are labeled with the average energy of the corresponding initial state.

Download (389KB)
5. Fig. 4. Dependences SP(t) and G(t) = – ln(SP(t))/(2t) for AR-type states with quantum numbers 1(1),2(2),3(3) and average energy Hmean = 3.4263 AU. The abscissa axis is time in AU. The dotted line on the right panel shows the half-width G(t) of the resonant state (2).

Download (137KB)
6. Fig. 5. Decay of the resonant state (solution of problem (1)). The dependences SP(t) (a) and G(t) = – ln(SP(t))/(2t) (b) are shown by a solid line. The dotted line on the left panel shows the function exp(–2Гt), and on the right panel – the half-width Г of the resonant state (2). The abscissa axis is time in AU.

Download (84KB)
7. Fig. 6. Evolution of the AR-1 state: wave function at time t = 0 (a) and t = T/2 (b). On the abscissa axis is the coordinate in AU.

Download (126KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».