Thermochemical Analysis of the Interaction between Pyridoxine and L-Carnosine, L-Histidine, and L-Asparagine in Aqueous Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Calorimetry is used to study the interaction between dipeptide L-carnosine (Car) and amino acids L-histidine (His) and L-asparagine (Asn) with pyridoxine (PN) in an aqueous solution. Experimental values of the enthalpy of dissolution of amino acids and peptide in an aqueous PN solution at T = 298.15 K are obtained for the first time. The thermodynamic characteristics and stoichiometry of the formation of molecular complexes between the reactants are determined. It is found that the stability of the resulting complexes depends on the structure of the reactants and falls in the order Car > Asn > His. It is shown that the main contribution to the stabilization of the resulting complexes comes from the entropy component of the Gibbs energy of complexation.

About the authors

E. Yu. Tyunina

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: tey@isc-ras.ru
153045, Ivanovo, Russia

O. N. Krutova

Ivanovo State University of Chemistry and Technology

Email: tey@isc-ras.ru
153000, Ivanovo, Russia

V. P. Barannikov

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: tey@isc-ras.ru
153045, Ivanovo, Russia

References

  1. Kihal A., Rodriguez-Prado M., Godoy C. et al. // J. Dairy Sci. 2020. V. 103. P. 3125. https://doi.org/10.3168/jds.2019-17561
  2. Koczoń P., Piekut J., Borawska M. et al. // Spectrochim. Acta. Part A. 2005. V. 61. P. 1917. https://doi.org/10.1016/j.saa.2004.07.022
  3. Hellmann H., Mooney S. // Molecules. 2010. V. 15. P. 442. https://doi.org/10.3390/molecules15010442
  4. Li W., Yang X., Song Q. et al. // Bioorg. Chem. 2020. V. 97. P. 103707. https://doi.org/10.1016/j.bioorg.2020.103707
  5. Komasa A., Babijczuk K., Dega-Szafran Z. et al. // J. Mol. Struct. 2022. V. 1254. P. 131773. https://doi.org/10.1016/j.molstruc.2021.131773
  6. Ristilä M., Matxain J.M., Strid Ă. et al. // J. Phys. Chem. B. 2006. V. 110. P. 16774. https://doi.org/10.1021/jp062800n
  7. Гамов Г.А., Александрийский В.В., Шарнин В.А. // Журн. структур. химии. 2017. Т. 58. № 2. С. 293. https://doi.org/10.15372/JSC20170208
  8. Takács-Novák K., Tam K.Y. // J. Pharm. Biomed. Anal. 2000. V. 21. P. 1171.
  9. Noszál B. Acid-Base Properties of Pioligands in Piocoordination Chemistry. Ellis-Horwood, Chichester, UK, 1990.
  10. Tyunina E.Y., Badelin V.G., Mezhevoi I.N. et al. // J. Mol. Liq. 2015. V. 211. P. 494. https://doi.org/10.1016/j.molliq.2015.07.024
  11. Sharma M., Banipal T.S., Banipal P.K. // J. Chem. Eng. Data. 2018. V. 63. No. 5. P. 1325. https://doi.org/10.1021/acs.jced.7b00937
  12. Slifkin Von M.A. Charge Transfer Interaction in Biomolecules. London – New York: Acad. Press, 1971. https://doi.org/10.1002/ardp.19723050815
  13. Kimura T., Matubayasi N., Sato H. et al. // J. Phys. Chem. B. 2002. V. 106. P. 12336. https://doi.org/10.1021/jp021246o
  14. Krall A.S., Xu Sh., Geraeber Th.G. et al. // Nut. Commun. 2016. V. 7. P. 11457. https://doi.org/10.1038/ncomms11457
  15. Bretti C., Cigala R.M., Giuffrè O. et al. // Fluid Phase Equilibr. 2018. V. 459. P. 51. https://doi.org/10.1016/j.fluid.2017.11.030
  16. Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. // J. Mol. Liq. 2019. V. 278. P. 505. https://doi.org/10.1016/j.molliq.2019.01.092
  17. Cleland W.W. // Arch. Biochem. Biophys. 2000. V. 382. P. 1.
  18. Tyunina E.Yu., Mezhevoi I.N., Dunaeva V.V. // J. Chem. Thermodynamic. 2020. V. 150. P. 106206. https://doi.org/10.1016/j.jct.2020.106206
  19. Abdelkader H., Swinden J., Pierscionek B.K. et al. // J. Pharm. Biomed. Analysis. 2015. V. 114. P. 241. https://doi.org/10.1016/j.jpba.2015.05.025
  20. Guiotto A., Calderan A., Ruzza P. et al. // Curr. Med. Chem. 2005. V. 12. P. 2293. https://doi.org/10.2174/0929867054864796
  21. Bertinaria M., Rolando B., Giorgis M. et al. // J. Med. Chem. 2011. V. 54. P. 611. https://doi.org/10.1021/jm101394n
  22. Tyunina E.Yu., Krutova O.N., Lytkin A.I. // Thermochim. Acta. 2020. V. 690. P. 178704. https://doi.org/10.1016/j.tca.2020.178704
  23. Barannikov V.P., Badelin V.G., Venediktov E.A. et al. // Russ. J. Phys. Chem. A. 2011. V. 85. № 1. P. 16.https://doi.org/10.1134/S003602441101002X
  24. Krutova O.N., Usacheva T.R., Myshenkov M.S. et al. // J. Therm. Anal. Cal. 2021. No.7. https://doi.org/10.1007/s10973-021-10982-1
  25. Kochergina L.A., Grosheva S.G., Krutova O.N. // Russ. J. Inorg. Chem. 2011. V. 56. P. 1481. https://doi.org/10.1134/S0036023611090129
  26. Vasil'ev V.P., Kochergina L.A., Garavin V.Yu. // Russ. J. Gen. Chem. 1985. V. 55. P. 2780.
  27. Lytkin A.I., Barannikov V.P., Badelin V.G. et al. // J. Therm. Anal. Cal. 2020. V. 139. P. 3683. https://doi.org/10.1007/s10973-019-08604-y
  28. Lytkin A.I., Krutova O.N., Tyunina E.Yu. et al. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. & Chem. Tech.] 2020. V. 63. № 6. P. 25. https://doi.org/10.6060/ivkkt.20206306.6183
  29. Badelin V.G., Tyunina E.Yu., Mezhevoi I.N. // Russ. J. Appl. Chem. 2007. V. 80. P. 711. https://doi.org/10.1134/S1070427207050047
  30. Smirnov V.I., Badelin V.G. // Thermochim. Acta. 2015. V. 606. P. 41. https://doi.org/10.1016/j.tca.2015.03.007
  31. Wadsö I., Goldberg R.N. // Pure Appl. Chem. 2001. V. 73. P. 1625.
  32. Archer D.G. // Phys. Chem. Ref. Data. 1999. V. 28. P. 1. https://doi.org/10.1063/1.556034
  33. Badelin V.G., Smirnov V.I., Mezhevoi I.N. // Russ. J. Phys. Chem. 2002. V. 76. P. 1168.
  34. Badelin V.G., Smirnov V.I. // Russ. J. Phys. Chem. 2010. V. 84. P. 1163. https://doi.org/10.1134/S0036024410070150
  35. Palecz B. // J. Therm. Anal. Calorim. 1998. V. 54. P. 257.
  36. Piekarski H., Nowicka B. // J. Therm. Anal. Calorim. 2010. V. 102. P. 31.
  37. Palecz B., Piekarski H., Romanowski S. // J. Mol. Liq. 2000. V. 84. P. 279.
  38. Бородин В.А., Васильев В.П., Козловский Е.В. Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219–226.
  39. Palecz B. // J. Am. Chem. Soc. 2005. V. 127. No. 50. P. 17768. https://doi.org/10.1021/ja054407l
  40. Refat M.S., Al-Azab F.M., Al-Maydama H.M.A. et al. // Spectrochim. Acta. Part A: Mol. Biomol. Spectroscopy. 2014. V. 127. P. 196. https://doi.org/10.1016/j.saa.2014.02.043
  41. Ross P.D., Subramanian S. // Biochemistry. 1981. V. 20. № 11. P. 3096. https://doi.org/10.1021/bi00514a017

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (10KB)
3.

Download (12KB)
4.

Download (10KB)
5.

Download (38KB)

Copyright (c) 2023 Е.Ю. Тюнина, О.Н. Крутова, В.П. Баранников

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».