Generalized chord diagrams and weight systems
- 作者: Kazarian M.E.1,2,3, Krasil'nikov E.S.1,2, Lando S.K.1,2, Shapiro M.Z.4, Zaitsev M.R.2
-
隶属关系:
- International Laboratory of Cluster Geometry, Moscow, Russia
- National Research University "Higher School of Economics" (HSE), Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Michigan State University, East Lansing, MI, USA
- 期: 卷 80, 编号 6 (2025)
- 页面: 73-136
- 栏目: Articles
- URL: https://ogarev-online.ru/0042-1316/article/view/358700
- DOI: https://doi.org/10.4213/rm10271
- ID: 358700
如何引用文章
详细
作者简介
Maxim Kazarian
International Laboratory of Cluster Geometry, Moscow, Russia; National Research University "Higher School of Economics" (HSE), Moscow, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia
Email: kazarian@mccme.ru
Researcher ID: P-8602-2016
Doctor of physico-mathematical sciences, no status
Evgenii Krasil'nikov
International Laboratory of Cluster Geometry, Moscow, Russia; National Research University "Higher School of Economics" (HSE), Moscow, Russia
Email: evgeny12@mail.ru
Sergei Lando
International Laboratory of Cluster Geometry, Moscow, Russia; National Research University "Higher School of Economics" (HSE), Moscow, Russia
Email: lando@mccme.ru; lando@hse.ru
ORCID iD: 0000-0003-3373-3705
Scopus 作者 ID: 6602320062
Researcher ID: K-4775-2015
Doctor of physico-mathematical sciences
Michael Shapiro
Michigan State University, East Lansing, MI, USA
Email: mshapiro@math.msu.edu
Candidate of physico-mathematical sciences
Mikhail Zaitsev
National Research University "Higher School of Economics" (HSE), Moscow, Russia
Email: mrzaytsev@edu.hse.ru
参考
- D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
- L. Carlitz, “$q$-Bernoulli numbers and polynomials”, Duke Math. J., 15 (1948), 987–1000
- S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
- S. Chmutov, M. Kazarian, S. Lando, “Polynomial graph invariants and the KP hierarchy”, Selecta Math. (N. S.), 26:3 (2020), 34, 22 pp.
- D. Gurevich, P. Saponov, “Generalized Harish-Chandra morphism on reflection equation algebras”, J. Geom. Phys., 210 (2025), 105435, 9 pp.
- A. P. Isaev, P. Pyatov, “Spectral extension of the quantum group cotangent bundle”, Comm. Math. Phys., 288:3 (2009), 1137–1179
- Naihuan Jing, Ming Lui, A. Molev, “The $q$-immanants and higher quantum Capelli identities”, Comm. Math. Phys., 406:5 (2025), 99, 16 pp.
- V. F. R. Jones, “Hecke algebra representations of braid groups and link polynomials”, Ann. of Math. (2), 126:2 (1987), 335–388
- A.-A. A. Jucys, “Symmetric polynomials and the center of the symmetric group ring”, Rep. Math. Phys., 5:1 (1974), 107–112
- M. Kazarian, N. Kodaneva, S. Lando, The universal $mathfrak{gl}$-weight system and the chromatic polynomial, 2024, 21 pp.
- M. Kazarian, Zhuoke Yang, Universal polynomial $mathfrak{so}$-weight system, 2024, 15 pp.
- T. Kim, J. Choi, B. Lee, C. S. Ryoo, “Some identities on the generalized $q$-Bernoulli numbers and polynomials associated with $q$-Volkenborn integrals”, J. Inequal. Appl., 2010 (2010), 575240, 17 pp.
- N. Kodaneva, S. Lando, “Polynomial graph invariants induced from the $mathfrak{gl}$-weight system”, J. Geom. Phys., 210 (2025), 105421, 16 pp.
- M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
- S. K. Lando, “On primitive elements in the bialgebra of chord diagrams”, Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, 180, Adv. Math. Sci., 34, Amer. Math. Soc., Providence, RI, 1997, 167–174
- S. Lando, Zhuoke Yang, Chromatic polynomial and the $mathfrak{so}$-weight system, 2024, 17 pp.
- J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264
- O. Ogievetsky, P. Pyatov, Lecture on Hecke algebras, preprint CPT-2000/P.4076, 2001, 61 pp.
- A. Okounkov, “Quantum immanants and higher Capelli identities”, Transform. Groups, 1:1-2 (1996), 99–126
- G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 1–66
- M. Sato, Y. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Nonlinear partial differential equations in applied science (Tokyo, 1982), North-Holland Math. Stud., 81, Lecture Notes Numer. Appl. Anal., 5, North-Holland Publishing Co., Amsterdam, 1983, 259–271
- V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
- Zhuoke Yang, “On the Lie superalgebra $mathfrak{gl}(m|n)$ weight system”, J. Geom. Phys., 187 (2023), 104808, 11 pp.
- Zhuoke Yang, “New approaches to $mathfrak{gl}_N$ weight system”, Изв. РАН. Сер. матем., 87:6 (2023), 150–166
- K. Yordzhev, “On the cardinality of a factor set in the symmetric group”, Asian-Eur. J. Math., 7:2 (2014), 1450027, 14 pp.
补充文件
