Volume 78, Nº 6 (2023)
Renormalization in one-dimensional dynamics
Resumo
The study of dynamical and topological properties of interval exchange transformations and their natural generalisations is an important problem that is placed at the crossroad of several branches of mathematics, including dynamical systems, low-dimensional topology, algebraic geometry, number theory and geometric group theory. The current survey is focused on the systematic presentation of the results about ergodic and geometric properties of the orbits of certain one-dimensional maps. We also apply it to get information on the properties of the leaves of associated measured foliations on surfaces and 2-dimensional complexes . These results are based on the study of the properties of the renormalization processes. In each case the renormalisation can be seen as an algorithm that starts with a dynamical system and builds up an equivalent system with a smaller support set. For each class of dynamical systems that we deal with (interval exchange transformations with flips, linear involutions, interval translation maps, systems of isometries) we provide a brief description of the corresponding renormalization process. We show which properties of interval exchange transformations can be generalised and which ones change crucially. We also formulate the most challenging open problems. In the last section we provide a detailed description of the topological interpretation of the obtained results, including several applications to the Novikov's problem of asymptotic behaviour of plane sections of triply periodic surfaces.
Uspekhi Matematicheskikh Nauk. 2023;78(6):3-46
3-46
Operator-theoretic approach to averaging Schrödinger-type equations with periodic coefficients
Resumo
В $L_2(\mathbb{R}^d;\mathbb{C}^n)$ рассматривается самосопряженный сильно эллиптический дифференциальный оператор ${\mathcal A}_\varepsilon$ второго порядка. Предполагается, что коэффициенты оператора ${\mathcal A}_\varepsilon$ периодичны и зависят от ${\mathbf x}/\varepsilon$, где $\varepsilon>0$. Изучается поведение операторной экспоненты $e^{-i{\mathcal A}_\varepsilon\tau}$ при малом $\varepsilon$ и $\tau \in \mathbb{R}$. Результаты применяются к усреднению решений задачи Коши для уравнения типа Шрёдингера $i\partial_\tau{\mathbf u}_\varepsilon({\mathbf x},\tau)= ({\mathcal A}_\varepsilon{\mathbf u}_\varepsilon)({\mathbf x},\tau)$ с начальными данными из специального класса. При фиксированном $\tau$ и $\varepsilon \to 0$ решение сходится в $L_2(\mathbb{R}^d;\mathbb{C}^n)$ к решению усредненной задачи; погрешность имеет порядок $O(\varepsilon)$. При фиксированном $\tau$ получена аппроксимация решения ${\mathbf u}_\varepsilon( \cdot ,\tau)$ по норме в $L_2(\mathbb{R}^d;\mathbb{C}^n)$ с погрешностью $O(\varepsilon^2)$, а также аппроксимация решения по норме в $H^1(\mathbb{R}^d;\mathbb{C}^n)$ с погрешностью $O(\varepsilon)$. В этих аппроксимациях учитываются корректоры. Отслежена зависимость погрешностей от параметра $\tau$. Библиография: 113 названий.
Uspekhi Matematicheskikh Nauk. 2023;78(6):47-178
47-178
Gaussian multiplicative chaos for the sine process
Uspekhi Matematicheskikh Nauk. 2023;78(6):179-180
179-180
Explicit numerically realizable furmulae for Poincare–Steklov operators
Uspekhi Matematicheskikh Nauk. 2023;78(6):181-182
181-182
Fractional colourings of random hypergraphs
Uspekhi Matematicheskikh Nauk. 2023;78(6):183-184
183-184
A univalence domain for the class of holomorphic self-mappings of a disc with two fixed points
Uspekhi Matematicheskikh Nauk. 2023;78(6):185-186
185-186
Igor' Rostislavovich Shafarevich (on the centennary of his birthday)
Uspekhi Matematicheskikh Nauk. 2023;78(6):187-198
187-198
International conference "Branching processes and their applications"
Uspekhi Matematicheskikh Nauk. 2023;78(6):199-199
199-199
