Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 77, No 3 (2022)

Elements of hyperbolic theory on an infinite-dimensional torus

Glyzin S.D., Kolesov A.Y.

Abstract

On the infinite-dimensional torus $\mathbb{T}^{\infty}=E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional Banach torus and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon\mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ whose differentials $DG$ and $D(G^{-1})$ are uniformly bounded and uniformly continuous on $\mathbb{T}^{\infty}$. For diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$ elements of hyperbolic theory are presented systematically, starting with definitions and some auxiliary facts and ending by more advanced results. The latter include a criterion for hyperbolicity, a theorem on the $C^1$-roughness of hyperbolicity for diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$, the Hadamard–Perron theorem, as well as a fundamental result of hyperbolic theory, the fact that each Anosov diffeomorphism $G\in\operatorname{Diff}(\mathbb{T}^{\infty})$ has a stable and an unstable invariant foliation.Bibliography: 34 titles.
Uspekhi Matematicheskikh Nauk. 2022;77(3):3-72
pages 3-72 views

Feynman checkers: towards algorithmic quantum theory

Skopenkov M.B., Ustinov A.V.

Abstract

We survey and develop the most elementary model of electron motion introduced by Feynman. In this game, a checker moves on a checkerboard by simple rules, and we count the turns. Feynman checkers are also known as a one-dimensional quantum walk or an Ising model at imaginary temperature. We solve mathematically a Feynman problem from 1965, which was to prove that the discrete model (for large time, small average velocity, and small lattice step) is consistent with the continuum one. We study asymptotic properties of the model (for small lattice step and large time) improving the results due to Narlikar from 1972 and to Sunada and Tate from 2012.For the first time we observe and prove concentration of measure in the small-lattice-step limit. We perform the second quantization of the model.We also present a survey of known results on Feynman checkers.Bibliography: 53 titles.
Uspekhi Matematicheskikh Nauk. 2022;77(3):73-160
pages 73-160 views

Nikolai Nikolaevich Konstantinov (obituary)

Arlazarov V.L., Kanel-Belov A.Y., Bugaenko V.O., Vassiliev V.A., Gorodentsev A.L., Dorichenko S.A., Ilyashenko Y.S., Imaykin V.M., Komarov S.I., Kushnirenko A.G., Lysov Y.P., Semenov A.L., Tikhomirov V.M., Tolpygo A.K., Khovanskii A.G., Yakushkin P.A., Yaschenko I.V.
Uspekhi Matematicheskikh Nauk. 2022;77(3):161-170
pages 161-170 views

On estimating the local error of a numerical solution of a parametrized Cauchy problem

Kuznetsov E.B., Leonov S.S.
Uspekhi Matematicheskikh Nauk. 2022;77(3):171-172
pages 171-172 views

Spectrum of a convolution operator with potential

Borisov D.I., Zhizhina E.A., Piatnitski A.L.
Uspekhi Matematicheskikh Nauk. 2022;77(3):173-174
pages 173-174 views

Infinite sets can be Ramsey in the Chebyshev metric

Kupavskii A.B., Sagdeev A.A., Frankl N.
Uspekhi Matematicheskikh Nauk. 2022;77(3):175-176
pages 175-176 views

Roots of the characteristic equation for the symplectic groupoid

Chekhov L.O., Shapiro M.Z., Shibo H.
Uspekhi Matematicheskikh Nauk. 2022;77(3):177-178
pages 177-178 views

Viktor Stepanovich Kulikov (on his 70th birthday)

Bogomolov F.A., Gorchinskiy S.O., Zheglov A.B., Nikulin V.V., Orlov D.O., Osipov D.V., Parshin A.N., Popov V.L., Przyjalkowski V.V., Prokhorov Y.G., Reid M.A., Sergeev A.G., Treschev D.V., Tsikh A.K., Cheltsov I.A., Chirka E.M.
Uspekhi Matematicheskikh Nauk. 2022;77(3):179-181
pages 179-181 views

Evgenii Vital'evich Shchepin (on his 70th birthday)

Buslaev V.I., Buchstaber V.M., Dranishnikov A.N., Kliatskin V.M., Melikhov S.A., Montejano L., Novikov S.P., Semenov P.V.
Uspekhi Matematicheskikh Nauk. 2022;77(3):182-192
pages 182-192 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).