Accelerated Bregman gradient methods for relatively smooth and relatively Lipschitz continuous minimization problems
- Authors: Savchuk O.S.1,2,3, Alkousa M.S.3, Shushko A.I.1, Vyguzov A.A.1,3, Stonyakin F.S.1,2,3, Pasechnyuk D.A.4, Gasnikov A.V.1,4,5
-
Affiliations:
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- V. I. Vernadsky Crimean Federal University, Simferopol, Russia
- Innopolis University, Innopolis, Russia
- Ivannikov Institute for System Programming of the Russian Academy of Sciences, Research Center for the Trusted Artificial Intelligence, Moscow, Russia
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Issue: Vol 80, No 6 (2025)
- Pages: 137-172
- Section: Articles
- URL: https://ogarev-online.ru/0042-1316/article/view/358701
- DOI: https://doi.org/10.4213/rm10274
- ID: 358701
Cite item
Abstract
About the authors
Oleg S.. Savchuk
Moscow Institute of Physics and Technology, Dolgoprudny, Russia; V. I. Vernadsky Crimean Federal University, Simferopol, Russia; Innopolis University, Innopolis, Russia
Email: oleg.savchuk19@mail.ru
Mohammad Soud Alkousa
Innopolis University, Innopolis, Russia
Email: m.alkousa@innopolis.ru
Andrei Igorevich Shushko
Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Email: shushko.ai@phystech.edu; shushko.and@gmail.com
Aleksandr A.. Vyguzov
Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Innopolis University, Innopolis, Russia
Email: avyguzov@yandex.ru
Fedor Sergeevich Stonyakin
Moscow Institute of Physics and Technology, Dolgoprudny, Russia; V. I. Vernadsky Crimean Federal University, Simferopol, Russia; Innopolis University, Innopolis, Russia
Email: fedyor@mail.ru
Candidate of physico-mathematical sciences, Associate professor
Dmitry Arkad'evich Pasechnyuk
Ivannikov Institute for System Programming of the Russian Academy of Sciences, Research Center for the Trusted Artificial Intelligence, Moscow, Russia
Email: pasechnyuk2004@gmail.com
without scientific degree, no status
Alexander Vladimirovich Gasnikov
Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Ivannikov Institute for System Programming of the Russian Academy of Sciences, Research Center for the Trusted Artificial Intelligence, Moscow, Russia; Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Email: gasnikov@yandex.ru
ORCID iD: 0000-0002-7386-039X
Scopus Author ID: 15762551000
ResearcherId: L-6371-2013
Doctor of physico-mathematical sciences, Associate professor
References
- C. L. Atwood, “Optimal and efficient designs of experiments”, Ann. Math. Statist., 40:5 (1969), 1570–1602
- A. Auslender, M. Teboulle, “Interior gradient and proximal methods for convex and conic optimization”, SIAM J. Optim., 16:3 (2006), 697–725
- H. H. Bauschke, J. Bolte, M. Teboulle, “A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications”, Math. Oper. Res., 42:2 (2017), 330–348
- A. Beck, First-order methods in optimization, MOS–SIAM Ser. Optim., 25, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society (MOS), Philadelphia, PA, 2017, xii+475 pp.
- A. Beck, M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems”, SIAM J. Imaging Sci., 2:1 (2009), 183–202
- A. Ben-Tal, A. Nemirovski, Lectures on modern convex optimization. Analysis, algorithms, and engineering applications, MPS/SIAM Ser. Optim., 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2001, xvi+488 pp.
- J. Bergstra, Y. Bengio, “Random search for hyper-parameter optimization”, J. Mach. Learn. Res., 13 (2012), 281–305
- M. Bertero, P. Boccacci, G. Desiderà, G. Vicidomini, “Image deblurring with Poisson data: from cells to galaxies”, Inverse Problems, 25:12 (2009), 123006, 26 pp.
- L. Bogolubsky, G. Gusev, A. Raigorodskii, A. Tikhonov, M. Zhukovskii, P. Dvurechenskii, A. Gasnikov, Yu. Nesterov, “Learning supervised pagerank with gradient-based and gradient-free optimization methods”, NIPS {'}16: Proceedings of the 30th conference on neural information processing systems, Adv. Neural Inf. Process. Syst., 29, Curran Associates Inc., Red Hook, NY, 2016, 4914–4922
- L. Bottou, F. E. Curtis, J. Nocedal, “Optimization methods for large-scale machine learning”, SIAM Rev., 60:2 (2018), 223–311
- Gong Chen, M. Teboulle, “Convergence analysis of a proximal-like minimization algorithm using Bregman functions”, SIAM J. Optim., 3:3 (1993), 538–543
- I. Csiszar, “Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems”, Ann. Statist., 19:4 (1991), 2032–2066
- O. Devolder, F. Glineur, Yu. Nesterov, Intermediate gradient methods for smooth convex problems with inexact oracle, CORE Discussion Paper 2013/17, CORE, UCL, Louvain-la-Neuve, 2013, 47 pp.,
- O. Devolder, F. Glineur, Yu. Nesterov, “First-order methods of smooth convex optimization with inexact oracle”, Math. Program., 146:1-2, Ser. A (2014), 37–75
- R.-A. Dragomir, Bregman gradient methods for relatively-smooth optimization, PhD thesis, Univ. Toulouse 1 Capitole, 2021, ix+126 pp.,
- P. Dvurechensky, A. Gasnikov, “Stochastic intermediate gradient method for convex problems with stochastic inexact oracle”, J. Optim. Theory Appl., 171:1 (2016), 121–145
- F. Hanzely, P. Richtarik, Lin Xiao, “Accelerated Bregman proximal gradient methods for relatively smooth convex optimization”, Comput. Optim. Appl., 79:2 (2021), 405–440
- D. Kamzolov, P. Dvurechensky, A. V. Gasnikov, “Universal intermediate gradient method for convex problems with inexact oracle”, Optim. Methods Softw., 36:6 (2021), 1289–1316
- J. Kiefer, J. Wolfowitz, “Optimum designs in regression problems”, Ann. Math. Statist., 30:2 (1959), 271–294
- Haihao Lu, “ ‘Relative continuity’ for non-Lipschitz nonsmooth convex optimization using stochastic (or deterministic) mirror descent”, INFORMS J. Optim., 1:4 (2019), 288–303
- Haihao Lu, R. M. Freund, Yu. Nesterov, “Relatively smooth convex optimization by first-order methods, and applications”, SIAM J. Optim., 28:1 (2018), 333–354
- Yu. Nesterov, “Gradient methods for minimizing composite functions”, Math. Program., 140:1, Ser. B (2013), 125–161
- Yu. Nesterov, “Universal gradient methods for convex optimization problems”, Math. Program., 152:1-2, Ser. A (2015), 381–404
- Yu. Nesterov, Lectures on convex optimization, Springer Optim. Appl., 137, 2nd ed., Springer, Cham, 2018, xxiii+589 pp.
- Yu. Nesterov, “Implementable tensor methods in unconstrained convex optimization”, Math. Program., 186:1-2, Ser. A (2021), 157–183
- Yu. Nesterov, “Inexact accelerated high-order proximal-point methods”, Math. Program., 197:1, Ser. A (2023), 1–26
- F. Stonyakin, M. Alkousa, A. Titov, O. Savchuk, A. Gasnikov, “Adaptive algorithms for relatively Lipschitz continuous convex optimization problems”, Pure Appl. Funct. Anal., 8:5 (2023), 1505–1526
- F. Stonyakin, A. Tyurin, A. Gasnikov, P. Dvurechensky, A. Agafonov, D. Dvinskikh, M. Alkousa, D. Pasechnyuk, S. Artamonov, V. Piskunova, “Inexact model: a framework for optimization and variational inequalities”, Optim. Methods Softw., 36:6 (2021), 1155–1201
- M. Teboulle, “A simplified view of first order methods for optimization”, Math. Program., 170:1, Ser. B (2018), 67–96
- Yi Zhou, Yingbin Liang, Lixin Shen, “A simple convergence analysis of Bregman proximal gradient algorithm”, Comput. Optim. Appl., 73:3 (2019), 903–912
Supplementary files
