Regularity of solutions to Fokker–Planck–Kolmogorov equations
- Authors: Bogachev V.I.1,2, Shaposhnikov S.V.1,2
-
Affiliations:
- Lomonosov Moscow State University
- National Research University Higher School of Economics
- Issue: Vol 80, No 6 (2025)
- Pages: 3-44
- Section: Articles
- URL: https://ogarev-online.ru/0042-1316/article/view/358698
- DOI: https://doi.org/10.4213/rm10293
- ID: 358698
Cite item
Abstract
About the authors
Vladimir Igorevich Bogachev
Lomonosov Moscow State University; National Research University Higher School of Economics
Email: vibogach@mail.ru
ORCID iD: 0000-0001-5249-2965
Scopus Author ID: 7005751293
ResearcherId: P-6316-2016
Doctor of physico-mathematical sciences, Professor
Stanislav Valer'evich Shaposhnikov
Lomonosov Moscow State University; National Research University Higher School of Economics
Email: starticle@mail.ru
ORCID iD: 0000-0002-3281-7061
References
- F. Asadian, “Regularity of measures induced by solutions of infinite dimensional stochastic differential equations”, Rocky Mount. J. Math., 27:2 (1997), 387–423
- P. Bauman, “Equivalence of the Green's functions for diffusion operators in ${mathbf R}^n$: a counterexample”, Proc. Amer. Math. Soc., 91:1 (1984), 64–68
- V. I. Bogachev, G. Da Prato, M. Röckner, “Regularity of invariant measures for a class of perturbed Ornstein–Uhlenbeck operators”, NoDEA Nonlinear Differential Equations Appl., 3:2 (1996), 261–268
- V. I. Bogachev, N. Krylov, M. Röckner, “Regularity of invariant measures: the case of non-constant diffusion part”, J. Funct. Anal., 138:1 (1996), 223–242
- V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic regularity and essential self-adjointness of Dirichlet operators on $mathbb R^n$”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24:3 (1997), 451–461
- V. I. Bogachev, N. V. Krylov, M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11-12 (2001), 2037–2080
- V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic equations for measures: regularity and global bounds of densities”, J. Math. Pures Appl. (9), 85:6 (2006), 743–757
- V. I. Bogachev, I. I. Malofeev, S. V. Shaposhnikov, “On dependence of solutions to Fokker–Planck–Kolmogorov equations on their coefficients and initial data”, Math. Notes, 116:3 (2024), 421–431
- V. I. Bogachev, S. N. Popova, S. V. Shaposhnikov, “On Sobolev regularity of solutions to Fokker–Planck–Kolmogorov equations with drifts in $L^1$”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30:1 (2019), 205–221
- V. I. Bogachev, M. Röckner, “Regularity of invariant measures on finite and infinite dimensional spaces and applications”, J. Funct. Anal., 133:1 (1995), 168–223
- V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “The Poisson equation and estimates for distances between stationary distributions of diffusions”, J. Math. Sci. (N. Y.), 232:3 (2018), 254–282
- V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Zvonkin's transform and the regularity of solutions to double divergence form elliptic equations”, Comm. Partial Differential Equations, 48:1 (2023), 119–149
- V. I. Bogachev, M. Röckner, Feng-Yu Wang, “Elliptic equations for invariant measures on finite and infinite dimensional manifolds”, J. Math. Pures Appl. (9), 80:2 (2001), 177–221
- V. I. Bogachev, A. V. Shaposhnikov, S. V. Shaposhnikov, “Log-Sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations”, Calc. Var. Partial Differential Equations, 58:5 (2019), 176, 16 pp.
- V. I. Bogachev, S. V. Shaposhnikov, “Integrability and continuity of solutions to double divergence form equations”, Ann. Mat. Pura Appl. (4), 196:5 (2017), 1609–1635
- V. I. Bogachev, S. V. Shaposhnikov, “Representations of solutions to Fokker–Planck–Kolmogorov equations with coefficients of low regularity”, J. Evol. Equ., 20:2 (2020), 355–374
- V. I. Bogachev, S. V. Shaposhnikov, “On reconstruction of coefficients of Fokker–Planck–Kolmogorov equations”, J. Evol. Equ., 25:1 (2025), 20, 18 pp.
- V. I. Bogachev, S. V. Shaposhnikov, A. Yu. Veretennikov, “Differentiability of solutions of stationary Fokker–Planck–Kolmogorov equations with respect to a parameter”, Discrete Contin. Dyn. Syst., 36:7 (2016), 3519–3543
- S. Bonaccorsi, M. Fuhrman, “Regularity results for infinite dimensional diffusions. A Malliavin calculus approach”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 10:1 (1999), 35–45
- S. Bonaccorsi, M. Fuhrman, “Integration by parts and smoothness of the law for a class of stochastic evolution equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:1 (2004), 89–129
- F. Chiarenza, M. Frasca, P. Longo, “$W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients”, Trans. Amer. Math. Soc., 336:2 (1993), 841–853
- Jongkeun Choi, Hongjie Dong, Dong-ha Kim, Seick Kim, Regularity of elliptic equations in double divergence form and applications to Green's function estimates, 2025 (v1 – 2024), 31 pp.
- G. Da Prato, A. Debussche, “Absolute continuity of the invariant measures for some stochastic PDEs”, J. Stat. Phys., 115:1-2 (2004), 451–468
- G. Da Prato, A. Debussche, B. Goldys, “Some properties of invariant measures of non symmetric dissipative stochastic systems”, Probab. Theory Related Fields, 123:3 (2002), 355–380
- G. Da Prato, H. Frankowska, “Existence, uniqueness, and regularity of the invariant measure for a class of elliptic degenerate operators”, Differential Integral Equations, 17:7-8 (2004), 737–750
- G. Da Prato, M. Röckner, Feng-Yu Wang, “Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups”, J. Funct. Anal., 257:4 (2009), 992–1017
- G. Da Prato, J. Zabczyk, “Regular densities of invariant measures in Hilbert spaces”, J. Funct. Anal., 130:2 (1995), 427–449
- G. Da Prato, J. Zabczyk, Ergodicity for infinite dimensional systems, London Math. Soc. Lecture Note Ser., 229, Cambridge Univ. Press, Cambridge, 1996, xii+339 pp.
- E. Di Nezza, G. Palatucci, E. Valdinoci, “Hitchhiker's guide to the fractional Sobolev spaces”, Bull. Sci. Math., 136:5 (2012), 521–573
- Hongjie Dong, L. Escauriaza, Seick Kim, “On $C^1$, $C^2$, and weak type-$(1,1)$ estimates for linear elliptic operators: part II”, Math. Ann., 370:1-2 (2018), 447–489
- Hongjie Dong, L. Escauriaza, Seick Kim, “On $C^{1/2,1}$, $C^{1,2}$, and $C^{0,0}$ estimates for linear parabolic operators”, J. Evol. Equ., 21:4 (2021), 4641–4702
- Hongjie Dong, Dong-ha Kim, Seick Kim, “The Dirichlet problem for second-order elliptic equations in non-divergence form with continuous coefficients”, Math. Ann., 392:1 (2025), 573–618
- Hongjie Dong, Dong-ha Kim, Seick Kim, The Dirichlet problem for second-order elliptic equations in non-divergence form with continuous coefficients: the two-dimensional case, 2025, 23 pp.
- Hongjie Dong, Dong-ha Kim, Seick Kim, Regular boundary points and the Dirichlet problem for elliptic equations in double divergence form, 2025, 27 pp.
- Hongjie Dong, Seick Kim, “On $C^1$, $C^2$, and weak type-$(1, 1)$ estimates for linear elliptic operators”, Comm. Partial Differential Equations, 42:3 (2017), 417–435
- Hongjie Dong, Seick Kim, Sungjin Lee, “Note on Green's functions of non-divergence elliptic operators with continuous coefficients”, Proc. Amer. Math. Soc., 151:5 (2023), 2045–2055
- Hongjie Dong, Seick Kim, Sungjin Lee, “Estimates for fundamental solutions of parabolic equations in non-divergence form”, J. Differential Equations, 340 (2022), 557–591
- Hongjie Dong, Seick Kim, B. Sirakov, Hopf–Oleinik lemma for elliptic equations in double divergence form, 2025, 29 pp.
- B. Dyda, R. L. Frank, “Fractional Hardy–Sobolev–Maz'ya inequality for domains”, Studia Math., 208:2 (2012), 151–166
- A. Es-Sarhir, “Sobolev regularity of invariant measures for generalized Ornstein–Uhlenbeck operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9:4 (2006), 595–606
- X. Fernique, “Comparaison de mesures gaussiennes et de mesures produit”, Ann. Inst. H. Poincare Probab. Statist., 20:2 (1984), 165–175
- M. Fuhrman, “Regularity properties of transition probabilities in infinite dimensions”, Stochastics Stochastics Rep., 69:1-2 (2000), 31–65
- M. Fuhrman, “Logarithmic derivatives of invariant measure for stochastic differential equations in Hilbert spaces”, Stochastics Stochastics Rep., 71:3-4 (2001), 269–290
- B. Gaveau, J.-M. Moulinier, “Regularite des mesures et perturbations stochastiques de champs de vecteurs sur des espaces de dimension infinie”, Publ. Res. Inst. Math. Sci., 21:3 (1985), 593–616
- B. Goldys, B. Maslowski, “Lower estimates of transition densities and bounds on exponential ergodicity for stochastic PDE's”, Ann. Probab., 34:4 (2006), 1451–1496
- F. Gozzi, “Smoothing properties of nonlinear transition semigroups: case of Lipschitz nonlinearities”, J. Evol. Equ., 6:4 (2006), 711–743
- I. Gyöngy, Seick Kim, “Harnack inequality for parabolic equations in double-divergence form with singular lower order coefficients”, J. Differential Equations, 412 (2024), 857–880
- Sukjung Hwang, Seik Kim, “Green's function for second order elliptic equations in non-divergence form”, Potential Anal., 52:1 (2020), 27–39
- Seick Kim, Recent progress on second-order elliptic and parabolic equations in double divergence form, 2025, 20 pp.
- Seick Kim, Longjuan Xu, “Green's function for second order parabolic equations with singular lower order coefficients”, Commun. Pure Appl. Anal., 21:1 (2022), 1–21
- N. V. Krylov, “Parabolic and elliptic equations with VMO coefficients”, Comm. Partial Differential Equations, 32:1-3 (2007), 453–475
- N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, Grad. Stud. Math., 96, Amer. Math. Soc., Providence, RI, 2008, xviii+357 pp.
- N. V. Krylov, “Elliptic equations with VMO $a,bin L_d$, and $cin L_{d/2}$”, Trans. Amer. Math. Soc., 374:4 (2021), 2805–2822
- N. V. Krylov, “Elliptic equations in Sobolev spaces with Morrey drift and the zeroth-order coefficients”, Trans. Amer. Math. Soc., 376:10 (2023), 7329–7351
- N. V. Krylov, “On parabolic equations in Morrey spaces with VMO $a$ and Morrey $b$, $c$”, NoDEA Nonlinear Differential Equations Appl., 32:1 (2025), 9, 20 pp.
- M. Kunze, L. Lorenzi, A. Rhandi, “Kernel estimates for nonautonomous Kolmogorov equations”, Adv. Math., 287 (2016), 600–639
- M. Kunze, M. Porfido, A. Rhandi, “Bounds for the gradient of the transition kernel for elliptic operators with unbounded diffusion, drift and potential terms”, Discrete Contin. Dyn. Syst. Ser. S, 17:5-6 (2024), 2141–2172
- K. Laidoune, G. Metafune, D. Pallara, A. Rhandi, “Global properties of transition kernels associated with second-order elliptic operators”, Parabolic problems, Progr. Nonlinear Differential Equations Appl., 80, Birkäuser/Springer Basel AG, Basel, 2011, 415–432
- Haesung Lee, “Strong uniqueness of finite-dimensional Dirichlet operators with singular drifts”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 26:3 (2023), 2350009, 17 pp.
- Haesung Lee, “Local elliptic regularity for solutions to stationary Fokker–Planck equations via Dirichlet forms and resolvents”, Bound. Value Probl., 2025 (2025), 68, 30 pp.
- Haesung Lee, “Analysis of linear elliptic equations with general drifts and $L^1$-zero-order terms”, J. Math. Anal. Appl., 548:2 (2025), 129425, 30 pp.
- Haesung Lee, G. Trutnau, “Existence and regularity of infinitesimally invariant measures, transition functions and time-homogeneous Itô-SDEs”, J. Evol. Equ., 21:1 (2021), 601–623
- Haesung Lee, G. Trutnau, “Existence and uniqueness of (infinitesimally) invariant measures for second order partial differential operators on Euclidean space”, J. Math. Anal. Appl., 507:1 (2022), 125778, 31 pp.
- R. Leitão, E. A. Pimentel, M. S. Santos, “Geometric regularity for elliptic equations in double-divergence form”, Anal. PDE, 13:4 (2020), 1129–1144
- L. Lorenzi, A. Rhandi, Semigroups of bounded operators and second-order elliptic and parabolic partial differential equations, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2021, xxii+480 pp.
- P. Malliavin, Stochastic analysis, Grundlehren Math. Wiss., 313, Springer-Verlag, Berlin, 1997, xii+343 pp.
- O. Manita, “Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids”, Theory Stoch. Process., 20:2 (2015), 85–96
- S. Menozzi, A. Pesce, X. Zhang, “Density and gradient estimates for non degenerate Brownian SDEs with unbounded measurable drift”, J. Differential Equations, 272 (2021), 330–369
- G. Metafune, D. Pallara, A. Rhandi, “Global properties of invariant measures”, J. Funct. Anal., 223:2 (2005), 396–424
- G. Metafune, D. Pallara, A. Rhandi, “Global properties of transition probabilities of singular diffusions”, Теория вероятн. и ее примен., 54:1 (2009), 116–148
- J.-M. Moulinier, “Absolue continuite de probabilites de transition par rapport à une mesure gaussienne dans un espace de Hilbert”, J. Funct. Anal., 64:2 (1985), 275–295
- D. Ornstein, “A non-inequality for differential operators in the $L_1$ norm”, Arch. Ration. Mech. Anal., 11:1 (1962), 40–49
- S. Pagliarani, G. Lucertini, A. Pascucci, “Optimal regularity for degenerate Kolmogorov equations in non-divergence form with rough-in-time coefficients”, J. Evol. Equ., 23:4 (2023), 69, 37 pp.
- S. Peszat, J. Zabczyk, “Strong Feller property and irreducibility for diffusions on Hilbert spaces”, Ann. Probab., 23:1 (1995), 157–172
- E. A. Pimentel, Elliptic regularity theory by approximation methods, London Math. Soc. Lecture Note Ser., 477, Cambridge Univ. Press, Cambridge, 2022, xi+190 pp.
- I. Shigekawa, “Existence of invariant measures of diffusions on an abstract Wiener space”, Osaka J. Math., 24:1 (1987), 37–59
- P. Sjögren, “On the adjoint of an elliptic linear differential operator and its potential theory”, Ark. Mat., 11:1-2 (1973), 153–165
- P. Sjögren, “Harmonic spaces associated with adjoints of linear elliptic operators”, Ann. Inst. Fourier (Grenoble), 25:3-4 (1975), 509–518
- K. Suzuki, “Regularity and stability of invariant measures for diffusion processes under synthetic lower Ricci curvature bounds”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 23:2 (2022), 745–808
Supplementary files
