R. Thompson's group $F$ and the amenability problem
- Авторлар: Guba V.S.1
-
Мекемелер:
- Vologda State University
- Шығарылым: Том 77, № 2 (2022)
- Беттер: 69-122
- Бөлім: Articles
- URL: https://ogarev-online.ru/0042-1316/article/view/133693
- DOI: https://doi.org/10.4213/rm10040
- ID: 133693
Дәйексөз келтіру
Аннотация
This paper focuses on Richard Thompson's group $F$, which was discovered in the 1960s. Many papers have been devoted to this group. We are interested primarily in the famous problem of amenability of this group, which was posed by Geoghegan in 1979. Numerous attempts have been made to solve this problem in one way or the other, but it remains open.In this survey we describe the most important known properties of this group related to the word problem and representations of elements of the group by piecewise linear functions as well as by diagrams and other geometric objects. We describe the classical results of Brin and Squier concerning free subgroups and laws. We include a description of more modern important results relating to the properties of the Cayley graphs (the Belk–Brown construction) as well as Bartholdi's theorem about the properties of equations in group rings. We consider separately the criteria for (non-)amenability of groups that are useful in the work on the main problem. At the end we describe a number of our own results about the structure of the Cayley graphs and a new algorithm for solving the word problem.Bibliography: 69 titles.
Негізгі сөздер
Әдебиет тізімі
- С. И. Адян, “Случайные блуждания на свободных периодических группах”, Изв. АН СССР. Сер. матем., 46:6 (1982), 1139–1149
- G. N. Arzhantseva, V. S. Guba, M. Lustig, J.-P. Preaux, “Testing Cayley graph densities”, Ann. Math. Blaise Pascal, 15:2 (2008), 233–286
- L. Bartholdi, “Amenability of groups is characterized by Myhill's theorem”, With an appendix by Dawid Kielak, J. Eur. Math. Soc. (JEMS), 21:10 (2019), 3191–3197
- J. M. Belk, K. S. Brown, “Forest diagrams for elements of Thompson's group $F$”, Internat. J. Algebra Comput., 15:5-6 (2005), 815–850
- M. G. Brin, “The ubiquity of Thompson's group $F$ in groups of piecewise linear homeomorphisms of the unit interval”, J. London Math. Soc. (2), 60:2 (1999), 449–460
- M. G. Brin, C. C. Squier, “Groups of piecewise linear homeomorphisms of the real line”, Invent. Math., 79:3 (1985), 485–498
- K. S. Brown, “Finiteness properties of groups”, J. Pure Appl. Algebra, 44:1-3 (1987), 45–75
- K. S. Brown, R. Geoghegan, “An infinite-dimentional torsion-free $FP_{infty}$ group”, Invent. Math., 77 (1984), 367–381
- J. Burillo, “Growth of positive words in Thompson's group $F$”, Comm. Algebra, 32:8 (2004), 3087–3094
- J. Burillo, Introduction to Thompson's group $F$, preprint, 2016, 85 pp.,par
- J. W. Cannon, W. J. Floyd, W. R. Parry, “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3-4 (1996), 215–256
- T. Ceccherini-Silberstein, M. Coornaert, Cellular automata and groups, Springer Monogr. Math., Springer-Verlag, Berlin, 2010, xx+439 pp.
- C. G. Chehata, “An algebraically simple ordered group”, Proc. London Math. Soc. (3), 2 (1952), 183–197
- Ching Chou, “Elementary amenable groups”, Illinois J. Math., 24:3 (1980), 396–407
- S. Cleary, J. Taback, “Thompson's group $F$ is not almost convex”, J. Algebra, 270:1 (2003), 133–149
- J. M. Cohen, “Cogrowth and amenability of discrete groups”, J. Funct. Anal., 48:3 (1982), 301–309
- M. M. Day, “Amenable semigroups”, Illinois J. Math., 1:4 (1957), 509–544
- П. де ля Арп, Р. И. Григорчук, Т. Чекерини-Сильберстайн, “Аменабельность и парадоксальные разбиения для псевдогрупп и дискретных метрических пространств”, Алгебра. Топология. Дифференциальные уравнения и их приложения, Сборник статей. К 90-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 224, Наука, М., 1999, 68–111
- V. Dlab, “On a family of simple ordered groups”, J. Austral. Math. Soc., 8:3 (1968), 591–608
- J. Dydak, “A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR's”, Bull. Acad. Polon Sci. Ser. Sci. Math. Astronom. Phys., 25:1 (1977), 55–62
- J. Dydak, “1-movable continua need not be pointed 1-movable”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25:6 (1977), 559–562
- M. Elder, E. Fusy, A. Rechnitzer, “Counting elements and geodesics in Thompson's group $F$”, J. Algebra, 324:1 (2010), 102–121
- E. Folner, “On groups with full Banach mean value”, Math. Scand., 3 (1955), 243–254
- S. B. Fordham, Minimal length elements of Thompson's group $F$, PhD thesis, Brigham Young Univ., 1995, 88 pp.
- P. Freyd, A. Heller, “Splitting homotopy idempotents II”, J. Pure Appl. Algebra, 89:1-2 (1993), 93–106
- R. Geoghegan, “Open problems in infinite-dimensional topology”, 1979 version, Topology Proc., 4:1 (1979), 287–338
- S. M. Gersten, “Selected problems”, Combinatorial group theory and topology (Alta, UT, 1984), Ann. of Math. Stud., 111, Princeton Univ. Press, Princeton, NJ, 1987, 545–551
- G. Golan, M. Sapir, “On subgroups of R. Thompson's group $F$”, Trans. Amer. Math. Soc., 369:12 (2017), 8857–8878
- G. Golan, M. Sapir, “On Jones' subgroup of R. Thompson group $F$”, J. Algebra, 470 (2017), 122–159
- G. Golan, M. Sapir, “On the stabilizers of finite sets of numbers in the R. Thompson group $F$”, Алгебра и анализ, 29:1 (2017), 70–110
- Ф. Гринлиф, Инвариантные средние на топологических группах и их приложения, Мир, М., 1973, 136 с.
- Р. И. Григорчук, “Симметричные случайные блуждания на дискретных группах”, Многокомпонентные случайные системы, Наука, М., 1978, 132–152
- Р. И. Григорчук, “Степени роста конечно-порожденных групп и теория инвариантных средних”, Изв. АН СССР. Сер. матем., 48:5 (1984), 939–985
- Р. И. Григорчук, “О проблеме М. Дэя об неэлементарных аменабельных группах в классе конечно-определенных групп”, Матем. заметки, 60:5 (1996), 774–775
- Р. И. Григорчук, “Пример конечно определенной аменабельной группы, не принадлежащей классу $EG$”, Матем. сб., 189:1 (1998), 79–100
- V. S. Guba, “Polynomial upper bounds for the Dehn function of R. Thompson's group $F$”, J. Group Theory, 1:2 (1998), 203–211
- V. S. Guba, “Polynomial isoperimetric inequalities for Richard Thompson's groups $F$, $T$, and $V$”, Algorithmic problems in groups and semigroups (Lincoln, NE, 1998), Trends Math., Birkhäuser Boston, Boston, MA, 2000, 91–120
- V. S. Guba, “On the properties of the Cayley graph of Richard Thompson's group $F$”, Internat. J. Algebra Comput., 14:5-6 (2004), 677–702
- V. S. Guba, “The Dehn function of Richard Thompson's group $F$ is quadratic”, Invent. Math., 163:2 (2006), 313–342
- V. S. Guba, “On the density of Cayley graphs of R. Thompson's group $F$ in symmetric generators”, Internat. J. Algebra Comput., 31:5 (2021), 969–981
- V. S. Guba, “On the Ore condition for the group ring of R. Thompson's group $F$”, Comm. Algebra, 49:11 (2021), 4699–4711
- V. Guba, Evacuation schemes on Cayley graphs and non-amenability of groups, submitted to Internat. J. Algebra Comput., 2021, 17 pp.
- В. С. Губа, С. М. Львовский, “Парадокс” Банаха–Тарского, 2-е изд., МЦНМО, М., 2016, 48 с.
- V. S. Guba, M. V. Sapir, “The Dehn function and a regular set of normal forms for R. Thompson's group $F$”, J. Austral. Math. Soc. Ser. A, 62:3 (1997), 315–328
- V. Guba, M. Sapir, Diagram groups, Mem. Amer. Math. Soc., 130, № 620, Amer. Math. Soc., Providence, RI, 1997, 117 pp.
- В. С. Губа, М. В. Сапир, “О подгруппах группы Р. Томпсона $F$ и других групп диаграмм”, Матем. сб., 190:8 (1999), 3–60
- V. S. Guba, M. V. Sapir, “Rigidity properties of diagram groups”, Internat. J. Algebra Comput., 12:1-2 (2002), 9–17
- V. S. Guba, M. V. Sapir, “Diagram groups and directed $2$-complexes: homotopy and homology”, J. Pure Appl. Algebra, 205:1 (2006), 1–47
- V. S. Guba, M. V. Sapir, “Diagram groups are totally orderable”, J. Pure Appl. Algebra, 205:1 (2006), 48–73
- M. Hall Jr., “Distinct representatives of subsets”, Bull. Amer. Math. Soc., 54:10 (1948), 922–926
- P. Hall, “On representation of subsets”, J. London Math. Soc., 10 (1935), 26–30
- P. R. Halmos, H. E. Vaughan, “The marriage problem”, Amer. J. Math., 72:1 (1950), 214–215
- G. Higman, Finitely presented infinite simple groups, Notes on Pure Math., 8, Austral. Nat. Univ., Canberra, 1974, vii+82 pp.
- H. Kesten, “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92:2 (1959), 336–354
- H. Kesten, “Full Banach mean values on countable groups”, Math. Scand., 7 (1959), 146–156
- R. McKenzie, R. J. Thompson, “An elementary construction of unsolvable word problems in group theory”, Word problems: decision problems and the Burnside problem in group theory (Irvine, CA, 1969), Stud. Logic Found. Math., 71, North-Holland, Amsterdam, 1973, 457–478
- L. Mirsky, Transversal theory. An account of some aspects of combinatorial mathematics, Math. Sci. Eng., 75, Academic Press, New York–London, 1971, ix+255 pp.
- J. T. Moore, “Fast growth in the Folner function for Thompson's group $F$”, Groups Geom. Dyn., 7:3 (2013), 633–651
- Дж. фон Нейман, “К общей теории меры”, Избранные труды по функциональному анализу, т. 1, Наука, М., 1987, 171–200
- А. Ю. Ольшанский, “К вопросу о существовании инвариантного среднего на группе”, УМН, 35:4(214) (1980), 199–200
- A. Yu. Ol'shanskii, M. V. Sapir, “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. Inst. Hautes Etudes Sci., 96 (2003), 43–169
- O. Ore, “Linear equations in non-commutative fields”, Ann. of Math. (2), 32:3 (1931), 463–477
- Г. Полиа, Г. Сеге, Задачи и теоремы из анализа, Часть 1. Ряды, интегральное исчисление, теория функций, 3-е изд., Наука, М., 1978, 392 с.
- M. V. Sapir, Combinatorial algebra: syntax and semantics, With contributions by V. S. Guba, M. V. Volkov, Springer Monogr. Math., Springer, Cham, 2014, xvi+355 pp.
- Ж.-П. Серр, “Деревья, амальгамы и ${SL}_2$”, Математика, 18:1 (1974), 3–51
- R. P. Stanley, Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, 1999, xii+581 pp.
- R. Szwarc, “A short proof of the Grigorchuk–Cohen cogrowth theorem”, Proc. Amer. Math. Soc., 106:3 (1989), 663–665
- D. Tamari, “A refined classification of semi-groups leading to generalized polynomial rings with a generalized degree concept”, Proceedings of the international congress of mathematicians (Amsterdam, 1954), v. 1, P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, 439–440
- S. Wagon, The Banach–Tarski paradox, Encyclopedia Math. Appl., 24, Camdridge Univ. Press, Cambridge, 1985, xvi+251 pp.
Қосымша файлдар
