Degradation of Enrofloxacin in Aqueous Solutions during Hybrid Cavitation-Plasma Treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The presence of fluoroquinolone antibiotics in the aquatic environment causes serious environmental concerns due to their toxicity and ability to stimulate the development of antibiotic resistance. In this work, a combined approach to water purification is studied, combining hydrodynamic cavitation and plasma discharge for the degradation of enrofloxacin in aqueous solutions. The effect of the power of electrical pulses (1.5 and 3.0 kW) and the number of treatment cycles (1-2) at initial antibiotic concentrations of 10 and 100 mg/l is estimated. With a lower power and two treatment cycles, the degradation degree of the antibiotic reached 69.2%. Additionally, a prolonged treatment effect is revealed due to the oxidation of intermediate decomposition products by reactive oxygen forms generated in the system. The most pronounced effect is observed at enrofloxacin concentrations of 10 mg/l. The results obtained confirm the high efficiency and practical potential of this hybrid technology to remove antibiotics in water treatment systems.

About the authors

T. D. Ksenofontova

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ksenofontovat@bk.ru
Moscow, Russian Federation

E. S. Mikhalev

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russian Federation

R. V. Nikonov

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russian Federation

I. S. Fedulov

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russian Federation

A. A. Arkhipenko

Institute for African Studies, Russian Academy of Sciences

Moscow, Russian Federation

M. S. Doronina

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russian Federation

V. B. Baranovskaya

A. V. Kamler

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russian Federation

References

  1. Gangar T., Patra S. Antibiotic Persistence and Its Impact on the Environment // 3 Biotech. 2023. V. 13. P. 401.
  2. Wei R., Ge F., Chen M., Wang R. Occurrence of Ciprofloxacin, Enrofloxacin, and Florelonic in Animal Wastewater and Water Resources // J. Environ. Qual. 2012. V. 41. P. 1481.
  3. Xia Y., Xie Q.- M., Chu T.- J. Effects of Enrofloxacin and Ciprofloxacin on Growth and Toxin Production of Microcystis aeruginosa // Water. 2023. V. 15. P. 3580.
  4. Kovalakova P., Cizmas L., McDonald T.J., Marsalek B., Feng M., Sharma V.K. Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review // Chemosphere. 2020. V. 251. P. 126351.
  5. Qin J., Fang Y., Shi J., Tokoro C., Córdova-Udaeta M., Oyama K., Zhang J. Waste-Based Ceramsite for the Efficient Removal of Ciprofloxacin in Aqueous Solutions // Int. J. Environ. Res. Public Health. 2023. V. 20. № 6. P. 5042.
  6. Alnajrani M.N., Alsager O.A. Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism // Sci. Rep. 2020. V. 10. P. 794.
  7. Cruz-Cruz A., Rivas-Sanchez A., Gallareta-Olivares G., González-González R.B., Cárdenas-Alcaide M.F., Iqbal H.M.N., Parra-Saldívar R. Carbon-Based Materials: Adsorptive Removal of Antibiotics from Water // Water Emerging Contaminants & Nanoplastics. 2023. V. 2. P. 2.
  8. Ajala O.A., Akinnavo S.O., Bamisaye A., Adedipe D.T., Adesina M.O., Okon- Akan O.A., Adebusuyi T.A., Ojedokun A.T., Adegoke K.A., Bello O.S. Adsorptive Removal of Antibiotic Pollutants from Wastewater Using Biomass/ Biochar-Based Adsorbents // RSC Adv. 2023. V. 13. P. 4678.
  9. Alvarado S., Megia-Fernandez A., Ortega-Muñoz M., Hernandez-Mateo F., Lopez-Jaramillo F.J., Santoyo-Gonzalez F. Removal of the Water Pollutant Ciprofloxacin Using Biodegradable Sorbent Polymers Obtained from Polysaccharides // Polymers. 2023. V. 15. № 15. P. 3188.
  10. Sayen S., Ortenbach-López M., Guillon E. Sorptive Removal of Enrofloxacin Antibiotic from Aqueous Solution Using a Ligno- Cellulosic Substrate from Wheat Bran // J. Environ. Chem. Eng. 2018. V. 6. № 5. P. 5820.
  11. Miklos D.B., Remy C., Jekel M., Linden K.G., Drewes J.E., Hübner U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment: A Critical Review // Water Res. 2018. V. 139. P. 118.
  12. Ikehata K., Li Y. Ozone- Based Processes // Advanced Oxidation Processes for Waste Water Treatment. Academic Press, Cambridge, 2018. P. 115.
  13. Derco J., Gotvajn A.Z., Cizmarová O., Dudáš J., Šumegová L., Šimovičová K. Removal of Micropollutants by Ozone- Based Processes // Processes. 2021. V. 9. P. 1013.
  14. Pignatello J.J., Oliveros E., MacKay A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry // Crit. Rev. Environ. Sci. Technol. 2006. V. 36. № 1. P. 1.
  15. You C.S., Kim T.S., Park Y.K., An K.H., Jung S.C. Degradation of Antibiotic Tetracycline Using H2O2/TiO2/UV/ microwave System // J. Ind. Eng. Chem. 2023. V. 127. P. 261.
  16. Wang B., Zeng T., Shang J., Tao J., Liu Y., Yang T., Hu G. Bubble Dynamics Model and Its Revelation of Ultrasonic Cavitation Behavior in Advanced Oxidation Processes: A Review // J. Water Process Eng. 2024. V. 63. P. 105470.
  17. Gururani P., Bhatnagar P., Bisht B., Kumar V., Joshi N.C., Tomar M.S., Pathak B. Cold Plasma Technology: Advanced and Sustainable Approach for Wastewater Treatment // Environ. Sci. Pollut. Res. 2021. P. 1.
  18. Zhang Y., Li Z., Bi W., Sun B., Pei H., Qin J., Liu F. Degradation of enrofloxacin by Fe0 activated PDS // Sci. Rep. 2024. V. 14. № 1. P. 26813.
  19. Aribi J., Jahouach-Rabai W., Lahsni R., Azzouz Z., Hamrouni B. Removal of Persistent Pharmaceutical from Water by Oxidation Process Based on Ionizing Technologies // Desalination Water Treat. 2021. V. 244. P. 180.
  20. Sun Y., Madureira J., Justino G.C., Cabo Verde S., Chmielewska-Śmietanko D., Sudlitz M., Bulka S., Chajduk E., Mróz A., Wang S., Wang J. Diclofenac Degradation in Aqueous Solution Using Electron Beam Irradiation and Combined with Nanobubbling // Appl. Sci. 2024. V. 14. № 14. P. 6028.
  21. Pandis P.K., Kalogirou C., Kanellou E., Vaitsis C., Savvidou M.G., Sourkouni G., Zorpas A.A., Argirosis C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review // ChemEngineering. 2022. V. 6. P. 8.
  22. Pereira T.C., Flores E.M.M., Abramova A.V., Verdini F., Calcio Gaudino E., Bucciol F., Cravotto G. Simultaneous Hydrodynamic Cavitation and Glow Plasma Discharge for the Degradation of Metronidazole in Drinking Water // Ultrason. Sonochem. 2023. V. 95. № 7. P. 106388.
  23. Verdini F., Abramova A., Boffa L., Calcio Gaudino E., Cravotto G. The Unveiling of a Dynamic Duo: Hydrodynamic Cavitation and Cold Plasma for the Degradation of Furosemide in Wastewater // Sci. Rep. 2024. V. 14. № 1. P. 6805.
  24. Fedorov K., Dinesh K., Sun X., Soltani R.D.C., Wang Z., Sonawane S., Boczkaj G. Synergistic Effects of Hybrid Advanced Oxidation Processes (AOPs) Based on Hydrodynamic Cavitation Phenomenon: A Review // Chem. Eng. J. 2022. V. 432. P. 134191.
  25. Nie S., Qin T., Ji H., Nie S., Dai Z. Synergistic Effect of Hydrodynamic Cavitation and Plasma Oxidation for the Degradation of Rhodamine B Dye Wastewater // J. Water Process Eng. 2022. V. 49. P. 103022.
  26. Calcio Gaudino E., Canova E., Liu P., Wu Z., Cravotto G. Degradation of Antibiotics in Wastewater: New Advances in Cavitational Treatments // Molecules. 2021. V. 26. P. 617.
  27. Barik A.J., Gogate P.R. Hybrid Treatment Strategies for 2,4,6-Trichlorophenol Degradation Based on Combination of Hydrodynamic Cavitation and AOPs // Ultrason. Sonochem. 2018. V. 40. P. 383.
  28. Li H., Li T., He S., Zhou J., Wang T., Zhu L. Efficient Degradation of Antibiotics by Non-Thermal Discharge Plasma: Highlight the Impacts of Molecular Structures and Degradation Pathways // Chem. Eng. J. 2020. V. 395. P. 125091.
  29. Meng C., Meng M., Sun X., Gu C., Zou H., Li X. Rapid Degradation of Chlortetracycline Using Hydrodynamic Cavitation with Hydrogen Peroxide // Int. J. Environ. Res. Public Health. 2022. V. 19. P. 4167.
  30. Yi L., Li B., Sun Y., Li S., Qi Q., Qin J., Sun H., Wang X., Wang J., Fang D. Degradation of norfloxacin in aqueous solution using hydrodynamic cavitation: Optimization of geometric and operation parameters and investigations on mechanism // Sep. Purif. Technol. 2021. V. 259. P. 118166.
  31. Guinea E., Garrido J.A., Rodríguez R.M., Cabot P.L., Arias C., Centellas F., Brillas E. Degradation of the Fluoroquinolone Enrofloxacin by Electrochemical Advanced Oxidation Processes Based on Hydrogen Peroxide Electrogeneration // Electrochim. Acta. 2010. V. 55. P. 2101.
  32. Xu Y., Liu S., Guo F., Zhang B. Evaluation of the Oxidation of Enrofloxacin by Permanganate and the Antimicrobial Activity of the Products // Chemosphere. 2016. V. 144. P. 113.
  33. Carneiro J.F., Aquino J.M., Silva B.F., Silva A.J., Rocha-Filho R.C. Comparing the Electrochemical Degradation of the Fluoroquinolone Antibiotics Norfloxacin and Ciprofloxacin Using Distinct Electrolytes and a BDD Anode: Evolution of Main Oxidation Byproducts and Toxicity // J. Environ. Chem. Eng. 2020. V. 8. P. 104433.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).