ДЕГРАДАЦИЯ ЭНРОФЛОКСАЦИНА В ВОДНЫХ РАСТВОРАХ ПРИ ГИБРИДНОЙ КАВИТАЦИОННО-ПЛАЗМЕННОЙ ОБРАБОТКЕ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Присутствие фторхинолоновых антибиотиков в водной среде вызывает серьёзные экологические опасения из-за их токсичности и способности стимулировать развитие антибиотикорезистентности. В данной работе исследован комбинированный подход к очистке воды, сочетающий гидродинамическую кавитацию и плазменный разряд для деградации энрофлоксацина в водных растворах. Оценено влияние мощности электрических импульсов (1.5 и 3.0 кВт) и числа циклов обработки (1-2) при исходных концентрациях антибиотика 10 и 100 мг/л. При меньшей мощности и двух циклах обработки степень деградации антибиотика достигала 69.2%. Дополнительно выявлен пролонгированный эффект обработки, обусловленный окислением промежуточных продуктов разложения генерируемыми в системе активными формами кислорода. Наиболее выраженный эффект наблюдался при концентрациях энрофлоксацина 10 мг/л. Полученные результаты подтверждают высокую эффективность и практический потенциал данной гибридной технологии для удаления антибиотиков в системах очистки воды.

Об авторах

Т. Д. Ксенофонтова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: ksenofontovat@bk.ru
Москва, Российская Федерация

Е. С. Михалев

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Российская Федерация

Р. В. Никонов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Российская Федерация

И. С. Федулов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Российская Федерация

А. А. Архипенко

Институт Африки РАН

Москва, Россия, Российская Федерация

М. С. Доронина

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Российская Федерация

В. Б. Барановская

А. В. Камлер

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Российская Федерация

Список литературы

  1. Gangar T., Patra S. Antibiotic Persistence and Its Impact on the Environment // 3 Biotech. 2023. V. 13. P. 401.
  2. Wei R., Ge F., Chen M., Wang R. Occurrence of Ciprofloxacin, Enrofloxacin, and Florelonic in Animal Wastewater and Water Resources // J. Environ. Qual. 2012. V. 41. P. 1481.
  3. Xia Y., Xie Q.- M., Chu T.- J. Effects of Enrofloxacin and Ciprofloxacin on Growth and Toxin Production of Microcystis aeruginosa // Water. 2023. V. 15. P. 3580.
  4. Kovalakova P., Cizmas L., McDonald T.J., Marsalek B., Feng M., Sharma V.K. Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review // Chemosphere. 2020. V. 251. P. 126351.
  5. Qin J., Fang Y., Shi J., Tokoro C., Córdova-Udaeta M., Oyama K., Zhang J. Waste-Based Ceramsite for the Efficient Removal of Ciprofloxacin in Aqueous Solutions // Int. J. Environ. Res. Public Health. 2023. V. 20. № 6. P. 5042.
  6. Alnajrani M.N., Alsager O.A. Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism // Sci. Rep. 2020. V. 10. P. 794.
  7. Cruz-Cruz A., Rivas-Sanchez A., Gallareta-Olivares G., González-González R.B., Cárdenas-Alcaide M.F., Iqbal H.M.N., Parra-Saldívar R. Carbon-Based Materials: Adsorptive Removal of Antibiotics from Water // Water Emerging Contaminants & Nanoplastics. 2023. V. 2. P. 2.
  8. Ajala O.A., Akinnavo S.O., Bamisaye A., Adedipe D.T., Adesina M.O., Okon- Akan O.A., Adebusuyi T.A., Ojedokun A.T., Adegoke K.A., Bello O.S. Adsorptive Removal of Antibiotic Pollutants from Wastewater Using Biomass/ Biochar-Based Adsorbents // RSC Adv. 2023. V. 13. P. 4678.
  9. Alvarado S., Megia-Fernandez A., Ortega-Muñoz M., Hernandez-Mateo F., Lopez-Jaramillo F.J., Santoyo-Gonzalez F. Removal of the Water Pollutant Ciprofloxacin Using Biodegradable Sorbent Polymers Obtained from Polysaccharides // Polymers. 2023. V. 15. № 15. P. 3188.
  10. Sayen S., Ortenbach-López M., Guillon E. Sorptive Removal of Enrofloxacin Antibiotic from Aqueous Solution Using a Ligno- Cellulosic Substrate from Wheat Bran // J. Environ. Chem. Eng. 2018. V. 6. № 5. P. 5820.
  11. Miklos D.B., Remy C., Jekel M., Linden K.G., Drewes J.E., Hübner U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment: A Critical Review // Water Res. 2018. V. 139. P. 118.
  12. Ikehata K., Li Y. Ozone- Based Processes // Advanced Oxidation Processes for Waste Water Treatment. Academic Press, Cambridge, 2018. P. 115.
  13. Derco J., Gotvajn A.Z., Cizmarová O., Dudáš J., Šumegová L., Šimovičová K. Removal of Micropollutants by Ozone- Based Processes // Processes. 2021. V. 9. P. 1013.
  14. Pignatello J.J., Oliveros E., MacKay A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry // Crit. Rev. Environ. Sci. Technol. 2006. V. 36. № 1. P. 1.
  15. You C.S., Kim T.S., Park Y.K., An K.H., Jung S.C. Degradation of Antibiotic Tetracycline Using H2O2/TiO2/UV/ microwave System // J. Ind. Eng. Chem. 2023. V. 127. P. 261.
  16. Wang B., Zeng T., Shang J., Tao J., Liu Y., Yang T., Hu G. Bubble Dynamics Model and Its Revelation of Ultrasonic Cavitation Behavior in Advanced Oxidation Processes: A Review // J. Water Process Eng. 2024. V. 63. P. 105470.
  17. Gururani P., Bhatnagar P., Bisht B., Kumar V., Joshi N.C., Tomar M.S., Pathak B. Cold Plasma Technology: Advanced and Sustainable Approach for Wastewater Treatment // Environ. Sci. Pollut. Res. 2021. P. 1.
  18. Zhang Y., Li Z., Bi W., Sun B., Pei H., Qin J., Liu F. Degradation of enrofloxacin by Fe0 activated PDS // Sci. Rep. 2024. V. 14. № 1. P. 26813.
  19. Aribi J., Jahouach-Rabai W., Lahsni R., Azzouz Z., Hamrouni B. Removal of Persistent Pharmaceutical from Water by Oxidation Process Based on Ionizing Technologies // Desalination Water Treat. 2021. V. 244. P. 180.
  20. Sun Y., Madureira J., Justino G.C., Cabo Verde S., Chmielewska-Śmietanko D., Sudlitz M., Bulka S., Chajduk E., Mróz A., Wang S., Wang J. Diclofenac Degradation in Aqueous Solution Using Electron Beam Irradiation and Combined with Nanobubbling // Appl. Sci. 2024. V. 14. № 14. P. 6028.
  21. Pandis P.K., Kalogirou C., Kanellou E., Vaitsis C., Savvidou M.G., Sourkouni G., Zorpas A.A., Argirosis C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review // ChemEngineering. 2022. V. 6. P. 8.
  22. Pereira T.C., Flores E.M.M., Abramova A.V., Verdini F., Calcio Gaudino E., Bucciol F., Cravotto G. Simultaneous Hydrodynamic Cavitation and Glow Plasma Discharge for the Degradation of Metronidazole in Drinking Water // Ultrason. Sonochem. 2023. V. 95. № 7. P. 106388.
  23. Verdini F., Abramova A., Boffa L., Calcio Gaudino E., Cravotto G. The Unveiling of a Dynamic Duo: Hydrodynamic Cavitation and Cold Plasma for the Degradation of Furosemide in Wastewater // Sci. Rep. 2024. V. 14. № 1. P. 6805.
  24. Fedorov K., Dinesh K., Sun X., Soltani R.D.C., Wang Z., Sonawane S., Boczkaj G. Synergistic Effects of Hybrid Advanced Oxidation Processes (AOPs) Based on Hydrodynamic Cavitation Phenomenon: A Review // Chem. Eng. J. 2022. V. 432. P. 134191.
  25. Nie S., Qin T., Ji H., Nie S., Dai Z. Synergistic Effect of Hydrodynamic Cavitation and Plasma Oxidation for the Degradation of Rhodamine B Dye Wastewater // J. Water Process Eng. 2022. V. 49. P. 103022.
  26. Calcio Gaudino E., Canova E., Liu P., Wu Z., Cravotto G. Degradation of Antibiotics in Wastewater: New Advances in Cavitational Treatments // Molecules. 2021. V. 26. P. 617.
  27. Barik A.J., Gogate P.R. Hybrid Treatment Strategies for 2,4,6-Trichlorophenol Degradation Based on Combination of Hydrodynamic Cavitation and AOPs // Ultrason. Sonochem. 2018. V. 40. P. 383.
  28. Li H., Li T., He S., Zhou J., Wang T., Zhu L. Efficient Degradation of Antibiotics by Non-Thermal Discharge Plasma: Highlight the Impacts of Molecular Structures and Degradation Pathways // Chem. Eng. J. 2020. V. 395. P. 125091.
  29. Meng C., Meng M., Sun X., Gu C., Zou H., Li X. Rapid Degradation of Chlortetracycline Using Hydrodynamic Cavitation with Hydrogen Peroxide // Int. J. Environ. Res. Public Health. 2022. V. 19. P. 4167.
  30. Yi L., Li B., Sun Y., Li S., Qi Q., Qin J., Sun H., Wang X., Wang J., Fang D. Degradation of norfloxacin in aqueous solution using hydrodynamic cavitation: Optimization of geometric and operation parameters and investigations on mechanism // Sep. Purif. Technol. 2021. V. 259. P. 118166.
  31. Guinea E., Garrido J.A., Rodríguez R.M., Cabot P.L., Arias C., Centellas F., Brillas E. Degradation of the Fluoroquinolone Enrofloxacin by Electrochemical Advanced Oxidation Processes Based on Hydrogen Peroxide Electrogeneration // Electrochim. Acta. 2010. V. 55. P. 2101.
  32. Xu Y., Liu S., Guo F., Zhang B. Evaluation of the Oxidation of Enrofloxacin by Permanganate and the Antimicrobial Activity of the Products // Chemosphere. 2016. V. 144. P. 113.
  33. Carneiro J.F., Aquino J.M., Silva B.F., Silva A.J., Rocha-Filho R.C. Comparing the Electrochemical Degradation of the Fluoroquinolone Antibiotics Norfloxacin and Ciprofloxacin Using Distinct Electrolytes and a BDD Anode: Evolution of Main Oxidation Byproducts and Toxicity // J. Environ. Chem. Eng. 2020. V. 8. P. 104433.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).