Radiation pattern of electric and magnetic currents located near a smooth convex conductive surface of large electrical size

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using the parabolic equation method, approximate asymptotic expressions are obtained for the radiation patterns of electric and magnetic dipoles located near a smooth, convex conducting surface of large electrical size. These expressions are expressed in terms of the Fock function in the light, penumbra, and shadow regions relative to the field source. In the penumbra and shadow regions, they supplement known solutions based on the parabolic equation method with the following asymptotic term, which takes into account the torsion of geodesic lines (surface rays). It is shown that for surface sources, the obtained expressions agree with the corresponding expressions based on the uniform geometric theory of diffraction. The radiation patterns of arbitrary sources are found by integrating the products of the dipole radiation patterns with the current density over the source coordinates. General expressions are specified for resonant “half-wave” radiators: slots on the surface and vibrators elevated above the surface, as well as for conducting spheres and a circular cone. The numerical results for calculating the radiation patterns of half-wave slots and dipoles on a sphere, cylinder, and cone are in good agreement with the results of calculations by other authors and with calculations using the rigorous eigenfunction method. A simplified version of the formulas is proposed that does not require constructing geodesic lines on the surface and is suitable for calculating the radiation pattern in the light and penumbra regions.

Авторлар туралы

M. Indenbom

JSC “All-Russian Research Institute of Radio Engineering”

Хат алмасуға жауапты Автор.
Email: mindenbom@mail.ru
Moscow, 105082

Әдебиет тізімі

  1. Фок В.А. Проблемы дифракции и распространения электромагнитных волн. М.: Сов. радио, 1970.Орлова Н.С. // РЭ. 1971. Т. XVI. № 6. С. 914.Орлова Н.С. // Труды V Всесоюзн. симп. по дифракции и распространению радиоволн. Л.: Наука, 1971. С. 131.Kouyoumjian R.G., Pathak P.H. // Proc. IEEE. 1974. V. 62. № 11. P. 1438.Pathak P.H., Wang N., Burnside W.D., Kouyoumjian R.G. // IEEE Trans. 1981. V. AP‑29. № 4. P. 609.Инденбом М.В., Филиппов В.С. // РЭ. 1977. Т. XXII. № 7. С. 1510.Рашевский П.К. Курс дифференциальной геометрии. Л.: Гос. изд. техн.-теор. лит., 1950.Канторович М.И., Муравьев Ю.К. // ЖТФ. 1952. Т. XXII. № 3. С. 394.Азрилянт П.А., Белкина М.Г. Численные результаты теории дифракции радиоволн вокруг земной поверхности. М.: Сов. радио, 1957.Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн. М.: Радио и связь, 1983.Bailin L.L., Silver S. // IRE Trans. 1956. V. AP‑4. № 1. P. 5. Correction: 1957. V. 5. № 3. P. 313.Инденбом М.В., Скуратов В.А. // Радиотехника. 2021. № 5. С. 117.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).