The algorithm for the formation of non-binary cascaded Gordon–Mills–Welch sequences
- Authors: Starodubtsev V.G.1
-
Affiliations:
- A.F. Mozhaiskii Military Space Academy
- Issue: Vol 70, No 11 (2025)
- Pages: 1102-1108
- Section: THEORY AND METHODS OF SIGNAL PROCESSING
- URL: https://ogarev-online.ru/0033-8494/article/view/368155
- DOI: https://doi.org/10.7868/S3034590125110099
- ID: 368155
Cite item
Abstract
Based on a modification of the algorithm for determining the vector of decimation indices for the synthesis of binary cascaded Gordon–Mills–Welch sequences (CGMWS), an algorithm for the formation of non-binary CGMWS in the field GF[((pl)m)n] with a period N = pS–1 = plmn–1 has been developed, including a procedure for determining the vector of decimation indices А(l,m,n,r1,r2) = (d1,d2,…,dK) of the basic M-sequence (MS) and the procedure for calculating the vector of initial shifts С(l,m,n,r1,r2) of the summed sequences. The algorithm provides for the calculation of additional parametersvj, which are analogues of the parameter rin the expression to determine the resulting vector of decimation indices. The results of calculating the equivalent linear complexity (ELC) values of ternary cascaded and conventional GMWS for the period N = 38– 1 = 6560 are presented. It is shown that the ELC of cascaded sequences exceeds the ELC of conventional GMWSup to 10 times, with an increase in the period, the gain increases due to an increase in the number of combined vectors of decimation indices Аj(lmn, lm, vj).
About the authors
V. G. Starodubtsev
A.F. Mozhaiskii Military Space Academy
Email: vgstarod@mail.ru
Saint Petersburg, 197198
References
- Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications, NY, John Wiley and Sons Ltd., 2005.
- Vishnevsky, V.M., Lyakhov, A.I., Portnoy, S.L., and Shakhnovich, I.V. Broadband Wireless Information Transmission Networks. Moscow: Tekhnosfera, 2005.
- CDMA: Past, Present, Future. Moscow: MAC, 2003.
- Sklar B. Digital Communications: Fundamentals and Applications, Prentice Hall, 2 edition, 2001.
- Golomb, S.W. and Gong, G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar. Cambridge: Cambridge University Press, 2005.
- Ipatov, V.P. Periodic Discrete Signals with Optimal Correlation Properties. Moscow: Radio i Svyaz’, 1992.
- Golomb, S.W. IEEE Transactions on Aerospace and Electronic Systems, 1992, Vol. AES-28, No. 2, P. 383.
- No, Jong-Seon. IEEE Transactions on Information Theory, 1996, Vol. IT-42, No. 1, P. 260.
- Zhu, J., Cheng, F., Tong, L. et al. Proceedings of the 2nd International Conference on Information Science and Engineering, Hangzhou, December 4–6, 2010. New York: IEEE, 2010, P. 2107.
- Starodubtsev, V.G. Radiotekhnika i Elektronika, 2023, Vol. 68, No. 7, P. 676.
- Klapper, A., Chan, A., and Goresky, M. IEEE Transactions on Information Theory, 1993, Vol. IT-39, No. 1, P. 177.
- Chung, H.B. and No, J.S. IEEE Transactions on Information Theory, 1999, Vol. IT-45, No. 6, P. 2060.
- Gong, G., Dai, Z.D., Solomon, W., and Golomb, S.W. IEEE Transactions on Information Theory, 2000, Vol. IT-46, No. 2, P. 474.
- Golomb, S.W., Gong, G., and Dai, Z.D. Discrete Mathematics, 2000, Vol. 219, P. 279.
- Gong, G. IEEE Transactions on Information Theory, 1996, Vol. IT-42, No. 1, P. 263.
- Tang, X. Science in China, Series F: Information Sciences, 2007, Vol. 50, No. 4, P. 551.
- Starodubtsev, V.G. Radiotekhnika i Elektronika, 2024, Vol. 69, No. 4, P. 369.
- Starodubtsev, V.G. Radiotekhnika i Elektronika, 2021, Vol. 66, No. 4, P. 380.
- Starodubtsev, V.G. Radiotekhnika i Elektronika, 2021, Vol. 66, No. 8, P. 810.
Supplementary files


