The algorithm for the formation of non-binary cascaded Gordon–Mills–Welch sequences

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on a modification of the algorithm for determining the vector of decimation indices for the synthesis of binary cascaded Gordon–Mills–Welch sequences (CGMWS), an algorithm for the formation of non-binary CGMWS in the field GF[((pl)m)n] with a period N = pS–1 = plmn–1 has been developed, including a procedure for determining the vector of decimation indices А(l,m,n,r1,r2) = (d1,d2,…,dK) of the basic M-sequence (MS) and the procedure for calculating the vector of initial shifts С(l,m,n,r1,r2) of the summed sequences. The algorithm provides for the calculation of additional parametersvj, which are analogues of the parameter rin the expression to determine the resulting vector of decimation indices. The results of calculating the equivalent linear complexity (ELC) values of ternary cascaded and conventional GMWS for the period N = 38– 1 = 6560 are presented. It is shown that the ELC of cascaded sequences exceeds the ELC of conventional GMWSup to 10 times, with an increase in the period, the gain increases due to an increase in the number of combined vectors of decimation indices Аj(lmn, lm, vj).

Sobre autores

V. Starodubtsev

A.F. Mozhaiskii Military Space Academy

Email: vgstarod@mail.ru
Saint Petersburg, 197198

Bibliografia

  1. Ипатов В.П. Широкополосные системы и кодовое разделение сигналов. Принципы и приложения. М.: Техносфера, 2007.
  2. Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В. Широкополосные беспроводные сети передачи информации. М.: Техносфера, 2005.
  3. CDMA: прошлое, настоящее, будущее. М.: МАС, 2003.
  4. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. М.: Вильямс, 2003.
  5. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar. Cambridge: Univ. Press, 2005.
  6. Ипатов В.П. Периодические дискретные сигналы с оптимальными корреляционными свойствами. М.: Радио и связь, 1992.
  7. Golomb S.W. // IEEE Trans. 1992. V. AES‑28. № 2. P. 383.
  8. No Jong-Seon. // IEEE Trans. 1996. V. IT‑42. № 1. P. 260.
  9. Zhu J., Cheng F., Tong L. et al. // The 2nd Int. Conf. on Information Science and Engineering. Hangzhou. 4–6 Dec. 2010. N.Y.: IEEE, 2010. P. 2107.
  10. Стародубцев В.Г. // РЭ. 2023. Т. 68. № 7. С. 676.
  11. Klapper A., Chan A., Goresky M. // IEEE Trans. 1993. V. IT‑39. № 1. P. 177.
  12. Chung H.B., No J.S. // IEEE Trans. 1999. V. IT‑45. № 6. P. 2060.
  13. Gong G., Dai Z.D., Solomon W., Golomb S.W. // IEEE Trans. 2000. V. IT‑46. № 2. P. 474.
  14. Golomb S.W., Gong G., Dai Z.D. // Discrete Mathematics. 2000. V. 219. P. 279.
  15. Gong G. // IEEE Trans. 1996. V. IT‑42. № 1. P. 263.
  16. Tang X. // Science in China. Ser. F: Information Sciences. 2007. V. 50. № 4. P. 551.
  17. Стародубцев В.Г. // РЭ. 2024. Т. 69. № 4. С. 369.
  18. Стародубцев В.Г. // РЭ. 2021. Т. 66. № 4. С. 380.
  19. Стародубцев В.Г. // РЭ. 2021. Т. 66. № 8. С. 810.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).