Minimization of quadratic functionals ratio in eigenvalue problems for the Orr-Sommerfeld equation
- 作者: Georgievskii D.V.1,2,3
-
隶属关系:
- Lomonosov Moscow State University
- Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
- Moscow Center for Fundamental and Applied Mathematics
- 期: 卷 89, 编号 6 (2025)
- 页面: 1011-1018
- 栏目: Articles
- URL: https://ogarev-online.ru/0032-8235/article/view/364151
- DOI: https://doi.org/10.7868/S3034575825060091
- ID: 364151
如何引用文章
详细
In eigenvalue problems for the Orr–Sommerfeld equation, in cases of no-slip conditions or the assignment of shear stress on one of the boundaries, upper estimates for the real parts of the eigenvalues responsible for stability are analytically obtained. To evaluate more accurate estimates than the known ones, it is necessary to minimize the ratios of certain combinations of quadratic functionals arising from the application of the integral relations method. The exact minima of the ratios are calculated and compared with the estimated minima obtained based on well-known Friedrichs inequalities.
作者简介
D. Georgievskii
Lomonosov Moscow State University; Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences; Moscow Center for Fundamental and Applied Mathematics
Email: georgiev@mech.math.msu.su
Moscow, Russia; Moscow, Russia; Moscow, Russia
参考
- Joseph D.D. Eigenvalue bounds for the Orr — Sommerfeld equation. Pt. 1 // J. Fluid Mech. 1968. V. 33. № 3. P. 617–621. https://doi.org/10.1017/S0022112068001552
- Joseph D.D. Eigenvalue bounds for the Orr — Sommerfeld equation. Pt. 2 // J. Fluid Mech. 1969. V. 36. № 4. P. 721–734. https://doi.org/10.1017/S0022112069001959
- Synge J.L. Hydrodynamical stability // Semicentenn. Publ. Amer. Math. Soc. 1938. V. 2. P. 227–269.
- Линь Цзя-цзяо. Теория гидродинамической устойчивости. М.: Изд-во иностр. лит-ры, 1958. 194 с.
- Ректорис К. Вариационные методы в математической физике и технике. М.: Мир, 1985. 592 с.
- Коллатц Л. Задачи на собственные значения (с техническими приложениями). М.:Наука, 1968. 504 c.
- Михлин С.Г. Вариационные методы в математической физике. М.: Наука, 1970. 512 с.
- Yih C.-S. Note on eigenvalue bounds for the Orr –Sommerfeld equation. // J. Fluid Mech. 1969. V. 38. No. 2. P. 273–278. https://doi.org/10.1017/S0022112069000164
- Georgescu A. Note on Joseph’s inequalities in stability theory // ZAMP. 1970. V. 21. P. 258–260. https://doi.org/10.1007/BF01590652
- Miklavčič M. Eigenvalues of the Orr– Sommerfeld equation in an unbounded domain // Arch. Rat. Mech.&Analysis. 1983. V. 83. P. 221–228. https://doi.org/10.1007/BF00251509
- Banerjee M.B., Shandil R.G., Gourla M.G. et al. Eigenvalue bounds for the Orr — Sommerfeld equation and their relevance to the existence of backward wave motion // Studies in Appl. Math. 1999. V. 103. № 1. P. 43–50. http://dx.doi.org/10.1111/1467-9590.00119
- Banerjee M.B., Shandil R.G., Chauhan S.S. et al. Eigenvalue bounds for the Orr — Sommerfeld equation and their relevance to the existence of backward wave motion. Pt. II // Studies in Appl. Math. 2000. V. 105. № 1. P. 31–34. http://dx.doi.org/10.1111/1467-9590.00140
- Puri P. Stability and eigenvalues bounds of the flow of a dipolar fluid between two parallel plates // Proc. Roy. Soc. A. 2005. V. 461. P. 1401–1421. http://dx.doi.org/10.1098/rspa.2004.1434
- Watanabe Y., Plum M., Nakao M.T. A computer-assisted instability proof for the Orr — Sommerfeld problem with Poiseuille flow // ZAMM. 2009. V. 89. № 1. P. 5–18. http://dx.doi.org/10.1002/zamm.200700158
- Ding S., Lin Z. Stability for two-dimensional plane Couette flow to the incompressible Navier–Stokes equations with Navier boundary conditions // Commun. Math. Sci. 2020. V. 18. № 5. P. 1233–1258. https://doi.org/10.48550/arXiv.1710.04855
- Bras e Silva P., Carvalho J. Stability and eigenvalue bounds for micropolar shear flows // ZAMM. 2024. V. 104. № 12. P. 1–10. https://doi.org/10.48550/arXiv.2409.11584
- Козырев О.Р., Степанянц Ю.А. Метод интегральных соотношений в линейной теории гидродинамической устойчивости // Итоги науки и техники. Сер. Механика жидкости и газа. М.: ВИНИТИ, 1991. Т. 25. С. 3–89.
- Георгиевский Д.В. Избранные задачи механики сплошной среды. 2-ое изд. М.: URSS, 2020. 560 с.
- Георгиевский Д.В. Новые оценки устойчивости одномерных плоскопараллельных течений вязкой несжимаемой жидкости // ПММ. 2010. Т. 74. № 4. С. 633–644.
- Георгиевский Д.В. Неравенства Фридрихса и усиленные достаточные условия устойчивости плоскопараллельных течений // Вестник МГУ. Сер. 1. Математика, механика. 2022. №3. С. 46–50.
补充文件

