CATALYTIC ACTIVITY OF PETROLEUM METAL PORPHYRINS IN OXIDATION OF ALKENES AND ALCOHOLS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the present work, spectrally pure free porphyrin ligands were obtained directly from petroleum asphaltenes for the first time. The complexes synthesized from them with various metals, such as cobalt, nickel, copper, and zinc, have been characterized by UV-visible spectroscopy, MALDI, and IR spectroscopy. The possibility of using these metal complexes in the reactions of catalytic epoxidation of alkenes and oxidation of alcohols is shown. Petroleum porphyrins of cobalt proved to be effective catalysts for these processes, whereas petroleum porphyrins of copper, nickel, and zinc showed no catalytic activity.

Full Text

Restricted Access

About the authors

Damir I. Tazeev

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: tazeevexc4@yahoo.com
ORCID iD: 0000-0002-7074-6508
SPIN-code: 8875-2280

кандидат химических наук, младший научный сотрудник лаборатории Переработки нефти и природных битумов

Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8

Nikolay A. Mironov

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: n_mir@mail.ru
ORCID iD: 0000-0003-1519-6600
SPIN-code: 7668-7927

кандидат химических наук, научный сотрудник лаборатории Переработки нефти и природных битумов

Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8

Dmitry V. Milordof

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: milordoff@ya.ru
ORCID iD: 0000-0003-2665-526X

кандидат химических наук, научный сотрудник лаборатории Переработки нефти и природных битумов

Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8

Elvira G. Tazeeva

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: tazeeva_elvira@mail.ru
ORCID iD: 0000-0002-6419-708X

младший научный сотрудник лаборатории Переработки нефти и природных битумов

Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8

Svetlana G. Yakubova

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: yakubovasg@mail.ru
ORCID iD: 0000-0002-2845-2573

кандидат химических наук, старший научный сотрудник лаборатории Переработки нефти и природных битумов

Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8

Makhmut R. Yakubov

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: yakubovmr@mail.ru
ORCID iD: 0000-0003-0504-5569

доктор химических наук, доцент, заместитель руководителя института, главный научный сотрудник, заведующий лаборатории Переработки нефти и природных битумов

Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8

References

  1. Che C.M., Huang J.S. Metalloporphyrin-based oxidation systems: From biomimetic reactions to application in organic synthesis. Chem. Commun. 2009. №. 27. P. 3996-4015. https://doi.org/10.1039/b901221d
  2. Hu X., Huang Z, Gu G., Wang L., Chen B. Heterogeneous catalysis of the air oxidation of thiols by the cobalt porphyrin intercalated into a phosphatoantimonic acid host. J. Mol. Catal. A Chem. 1998. V. 132. P. 171-179. https://doi.org/10.1016/S1381-1169(97)00240-9
  3. Hassanein M., Gerges S., Abdo M., El-Khalafy S. Catalytic activity and stability of anionic and cationic water soluble cobalt(II) tetraarylporphyrin complexes in the oxidation of 2-mercaptoethanol by molecular oxygen. J. Mol. Catal. A Chem. 2005. V. 240. P. 22-26. https://doi.org/10.1016/j.molcata.2005.05.043
  4. Ehsani M.R., Safadoost A.R., Avazzadeh R., Barkhordari A. Kinetic study of ethyl mercaptan oxidation in presence of Merox catalyst. Iran. J. Chem. Chem. Eng. 2013. V. 32. P. 71-80.
  5. Payamifar S., Abdouss M., Poursattar A. An overview of porphyrin-based catalysts for sulfide oxidation reactions. Polyhedron. 2025. V. 269. 117389. https://doi.org/10.1016/j.poly.2025.117389
  6. Raveena R., Bajaj A., Tripathi A., Kumari P. Recent catalytic applications of porphyrin and phthalocyanine-based nanomaterials in organic transformations, SynOpen, 2025. https://doi.org/10.1055/a-2541-6382
  7. Nhi B.D., Akhmadullin R.M., Akhmadullina A.G., Samuilov Y.D., Aghajanian S.I. Polymeric heterogeneous catalysts of transition-metal oxides: surface characterization, physicomechanical properties, and catalytic activity. ChemPhysChem. 2013. V. 14. P. 4149-4157. https://doi.org/10.1002/cphc.201300733
  8. Estrada-Montano A.S., Gomez-Benitez V., Camacho-Davila A., Rivera E, Morales-Morales D., Zaragoza-Galan G. Metalloporphyrins: Ideal catalysts for olefin epoxidations. Journal of Porphyrins and Phthalocyanines. 2022. V. 26. № 12. P. 821-836. https://doi.org/10.1142/s1088424622300051
  9. Che C.M., Lo V.K.Y., Zhou C.Y., Huang J.S. Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 2011. V. 40. P. 1950-1975. https://doi.org/10.1039/c0cs00142b
  10. Costas M. Selective C-H oxidation catalysed by metalloporphyrins. Coord. Chem. Rev. 2011. V. 255. P. 2912-2932. https://doi.org/10.1016/j.ccr.2011.06.026
  11. Le Maux P., Srour H.F., Simonneaux G. Enantioselective water-soluble iron-porphyrin-catalysed epoxidation with aqueous hydrogen peroxide and hydroxylation with iodobenzene diacetate. Tetrahedron. 2012. V. 68. P. 5824-5828. https://doi.org/10.1016/j.tet.2012.05.014
  12. Haber J., Matachowski L., Pamin K., Poltowicz J. The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system. J. Mol. Catal. A Chem. 2003. V. 198. P. 215-221. https://doi.org/10.1016/S1381-1169(02)00688-X
  13. Guo, C.C.; Liu, X.Q.; Liu, Q.; Liu, Y.; Chu, M.F.; Lin, W.Y. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies. J. Porphyr. Phthalocyanines. 2009. V. 13. P. 1250-1254. https://doi.org/10.1142/S1088424609001613
  14. Nakagaki S., Ferreira G., Ucoski G., Dias de Freitas Castro K. Chemical reactions catalysed by metalloporphyrin-based metal-organic frameworks. Molecules. 2013. V. 18. P. 7279-7308. https://doi.org/10.3390/molecules18067279
  15. Barona-Castaño J.C., Carmona-Vargas C.C., Brocksom T.J., de Oliveira K.T. Porphyrins as catalysts in scalable organic reactions. Molecules. 2016. V. 21. № 3. P. 310. https://doi.org/10.3390/molecules21030310
  16. Zhang J.L., Che C.M. Soluble polymer-supported ruthenium porphyrin catalysts for epoxidation, cyclopropanation, and aziridination of alkenes. Organic Letters. 2002. V. 4. № 11. P. 1911-1914. https://doi.org/10.1021/ol0259138
  17. Yu X.Q., Huang J.S., Yu W.Y., Che C.M. Polymer-supported ruthenium porphyrins: versatile and robust epoxidation catalysts with unusual selectivity. J. Am. Chem. Soc. 2000. V. 122. P. 5337-5342. https://doi.org/10.1021/ja000461k
  18. Zhang J.L., Zhou H.B., Huang J.S., Che C.M. Dendritic ruthenium porphyrins: A new class of highly selective catalysts for alkene epoxidation and cyclopropanation. Chem. Eur. J. 2002. V. 8. P. 1554-1562. https://doi.org/10.1002/1521-3765(20020402)8:7<1554::AID-CHEM1554>3.0.CO;2-R
  19. Zhang J.L., Che C.M. Dichlororuthenium(IV) complex of meso‐tetrakis(2,6‐dichlorophenyl)porphyrin: active and robust catalyst for highly selective oxidation of arenes, unsaturated steroids, and electron‐deficient alkenes by using 2,6‐dichloropyridine N‐oxide. Chem. Eur. J. 2005. V. 11. P. 3899-3914. https://doi.org/10.1002/chem.200401008
  20. Nam W., Oh S., Sun Y.J., Kim J., Kim W., Woo S.K. Factors affecting the catalytic epoxidation of olefins by iron porphyrin complexes and H2O2 in protic solvents. J. Org. Chem. 2003. V. 68. P. 7903-7906. https://doi.org/10.1021/jo034493c
  21. Collman J., Zhang X., Lee V., Uffelman E., Brauman J. Regioselective and enantioselective epoxidation catalysed by metalloporphyrins. Science. 1993. V. 261. P. 1404-1411. https://doi.org/10.1126/science.8367724
  22. Groves J.T., Myers R.S. Catalytic asymmetric epoxidations with chiral iron porphyrins. J. Am. Chem. Soc. 1983. V. 105. P. 5791-5796. https://doi.org/10.1021/ja00356a016
  23. Rose E., Andrioletti B., Zrig S., Quelquejeu-Etheve M. Enantioselective epoxidation of olefins with chiral metalloporphyrin catalysts. Chem. Soc. Rev. 2005. V. 34. P. 573-583. https://doi.org/10.1039/b405679p
  24. Stephenson N.A., Bell A.T. Mechanistic insights into iron porphyrin-catalysed olefin epoxidation by hydrogen peroxide: Factors controlling activity and selectivity. J. Mol. Catal. A Chem. 2007. V. 275. P. 54-62. https://doi.org/10.1016/j.molcata.2007.05.005
  25. Cunningham I.D., Danks T.N., Hay J.N., Hamerton I., Gunathilagan S. Evidence for parallel destructive, and competitive epoxidation and dismutation pathways in metalloporphyrin-catalysed alkene oxidation by hydrogen peroxide. Tetrahedron. 2001. V. 57. P. 6847-6853. https://doi.org/10.1016/S0040-4020(01)00639-1
  26. Mironov N.A., Milordov D.V., Abilova G.R., Yakubova S.G., Yakubov, M.R. Methods for studying petroleum porphyrins (review). Petrol. Chem. 2019. V. 59. № 10. P. 1077-1091. https://doi.org/10.1134/S0965544119100074
  27. Zhao X., Xu C., Shi Q. Porphyrins in Heavy Petroleums: A Review. In Structure and modeling of complex petroleum mixtures. Structure and Bonding. Springer. 2015. V. 168. P. 39-70. https://doi.org/10.1007/430_2015_189
  28. McKay Rytting B., Singh I.D., Kilpatrick P.K., Harper M.R., Mennito A.S., Zhang Y. Ultrahigh-purity vanadyl petroporphyrins. Energy & Fuels. 2018. V. 32. № 5. P. 5711-5724. https://doi.org/10.1021/acs.energyfuels.7b03358
  29. Tazeev D., Musin L., Mironov N., Milordov D., Tazeeva E., Yakubova S., Yakubov M. Complexes of transition metals with petroleum porphyrin ligands: preparation and evaluation of catalytic ability. Сatalysts. 2021. V. 11. P. 1506. https://doi.org/10.3390/catal11121506
  30. Milordov D.V., Usmanova G.Sh., Yakubov M.R., Yakubova S.G., Romanov G.V. Comparative analysis of extractive methods of porphyrin separation from heavy oil asphatenes. Chemistry and Technology of Fuels and Oils. 2013. V. 49 № 3. P. 29-32. https://doi.org/10.1007/s10553-013-0435-7
  31. Yakubov M.R., Milordov D.V., Yakubova S.G., Borisov D.N., Gryaznov P.I., Usmanova G.Sh. Sulfuric acid assisted extraction and fractionation of porphyrins from heavy petroleum residuals with a high content of vanadium and nickel. Petroleum Science and Technology. 2015. V. 33 № 9. P. 992-998. https://doi.org/10.1080/10916466.2015.1030078

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (4KB)
3. Fig. 2

Download (11KB)
4. Fig. 3

Download (17KB)
5. Fig. 4

Download (61KB)
6. Fig. 5

Download (29KB)
7. Таблица 1

Download (15KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).