Phonon assisted resonant tunneling and its phonons control
- Авторы: Kusmartsev F.V.1, Yamamoto K.2, Egorov I.A.1, Krevchik P.V.1, Zaytsev R.V.1, Pyataev N.A.3, Nikolaev A.V.4,5, Dakhnovsky Y.6, Bukharaev A.A.7,8, Shorokhov A.V.3, Filatov D.O.9, Semenov M.B.1, Krevchik V.D.1, Aringazin A.K.10
-
Учреждения:
- Department of Physics
- Research Institute
- Mordovia State University
- Skobeltsyn Institute of Nuclear Physics
- Moscow Institute of Physics and Technology (State University)
- Department of Physics and Astronomy
- Zavoisky Institute for Physics and Technology, Kazan Scientific Center
- Kazan Federal University
- Lobachevsky State University of Nizhny Novgorod
- Institute for Basic Research
- Выпуск: Том 104, № 6 (2016)
- Страницы: 392-397
- Раздел: Condensed Matter
- URL: https://ogarev-online.ru/0021-3640/article/view/159528
- DOI: https://doi.org/10.1134/S0021364016180016
- ID: 159528
Цитировать
Аннотация
We observe a series of sharp resonant features in the tunneling differential conductance of InAs quantum dots. We found that dissipative quantum tunneling has a strong influence on the operation of nanodevices. Because of such tunneling the current–voltage characteristics of tunnel contact created between atomic force microscope tip and a surface of InAs/GaAs quantum dots display many interesting peaks. We found that the number, position, and heights of these peaks are associated with the phonon modes involved. To describe the found effect we use a quasi-classical approximation. There the tunneling current is related to a creation of a dilute instanton–anti-instanton gas. Our experimental data are well described with exactly solvable model where one charged particle is weakly interacting with two promoting phonon modes associated with external medium. We conclude that the characteristics of the tunnel nanoelectronic devices can thus be controlled by a proper choice of phonons existing in materials, which are involved.
Об авторах
F. Kusmartsev
Department of Physics
Автор, ответственный за переписку.
Email: F.Kusmartsev@lboro.ac.uk
Великобритания, Loughborough, LE11 3TU
K. Yamamoto
Research Institute
Email: F.Kusmartsev@lboro.ac.uk
Япония, 2-25-22-304 Kohinata Bunkyo-ku, Tokyo
I. Egorov
Department of Physics
Email: F.Kusmartsev@lboro.ac.uk
Россия, Penza, 440026
P. Krevchik
Department of Physics
Email: F.Kusmartsev@lboro.ac.uk
Россия, Penza, 440026
R. Zaytsev
Department of Physics
Email: F.Kusmartsev@lboro.ac.uk
Россия, Penza, 440026
N. Pyataev
Mordovia State University
Email: F.Kusmartsev@lboro.ac.uk
Россия, Saransk, 430005
A. Nikolaev
Skobeltsyn Institute of Nuclear Physics; Moscow Institute of Physics and Technology (State University)
Email: F.Kusmartsev@lboro.ac.uk
Россия, Moscow, 119991; Dolgoprudnyi, Moscow region, 141700
Y. Dakhnovsky
Department of Physics and Astronomy
Email: F.Kusmartsev@lboro.ac.uk
США, Laramie, WY, 82071
A. Bukharaev
Zavoisky Institute for Physics and Technology, Kazan Scientific Center; Kazan Federal University
Email: F.Kusmartsev@lboro.ac.uk
Россия, Kazan, 420029; Kazan, 420008
A. Shorokhov
Mordovia State University
Email: F.Kusmartsev@lboro.ac.uk
Россия, Saransk, 430005
D. Filatov
Lobachevsky State University of Nizhny Novgorod
Email: F.Kusmartsev@lboro.ac.uk
Россия, Nizhny Novgorod, 603950
M. Semenov
Department of Physics
Email: F.Kusmartsev@lboro.ac.uk
Россия, Penza, 440026
V. Krevchik
Department of Physics
Email: F.Kusmartsev@lboro.ac.uk
Россия, Penza, 440026
A. Aringazin
Institute for Basic Research
Email: F.Kusmartsev@lboro.ac.uk
Казахстан, Astana, 010008
Дополнительные файлы
