Phonon assisted resonant tunneling and its phonons control
- 作者: Kusmartsev F.V.1, Yamamoto K.2, Egorov I.A.1, Krevchik P.V.1, Zaytsev R.V.1, Pyataev N.A.3, Nikolaev A.V.4,5, Dakhnovsky Y.6, Bukharaev A.A.7,8, Shorokhov A.V.3, Filatov D.O.9, Semenov M.B.1, Krevchik V.D.1, Aringazin A.K.10
-
隶属关系:
- Department of Physics
- Research Institute
- Mordovia State University
- Skobeltsyn Institute of Nuclear Physics
- Moscow Institute of Physics and Technology (State University)
- Department of Physics and Astronomy
- Zavoisky Institute for Physics and Technology, Kazan Scientific Center
- Kazan Federal University
- Lobachevsky State University of Nizhny Novgorod
- Institute for Basic Research
- 期: 卷 104, 编号 6 (2016)
- 页面: 392-397
- 栏目: Condensed Matter
- URL: https://ogarev-online.ru/0021-3640/article/view/159528
- DOI: https://doi.org/10.1134/S0021364016180016
- ID: 159528
如何引用文章
详细
We observe a series of sharp resonant features in the tunneling differential conductance of InAs quantum dots. We found that dissipative quantum tunneling has a strong influence on the operation of nanodevices. Because of such tunneling the current–voltage characteristics of tunnel contact created between atomic force microscope tip and a surface of InAs/GaAs quantum dots display many interesting peaks. We found that the number, position, and heights of these peaks are associated with the phonon modes involved. To describe the found effect we use a quasi-classical approximation. There the tunneling current is related to a creation of a dilute instanton–anti-instanton gas. Our experimental data are well described with exactly solvable model where one charged particle is weakly interacting with two promoting phonon modes associated with external medium. We conclude that the characteristics of the tunnel nanoelectronic devices can thus be controlled by a proper choice of phonons existing in materials, which are involved.
作者简介
F. Kusmartsev
Department of Physics
编辑信件的主要联系方式.
Email: F.Kusmartsev@lboro.ac.uk
英国, Loughborough, LE11 3TU
K. Yamamoto
Research Institute
Email: F.Kusmartsev@lboro.ac.uk
日本, 2-25-22-304 Kohinata Bunkyo-ku, Tokyo
I. Egorov
Department of Physics
Email: F.Kusmartsev@lboro.ac.uk
俄罗斯联邦, Penza, 440026
P. Krevchik
Department of Physics
Email: F.Kusmartsev@lboro.ac.uk
俄罗斯联邦, Penza, 440026
R. Zaytsev
Department of Physics
Email: F.Kusmartsev@lboro.ac.uk
俄罗斯联邦, Penza, 440026
N. Pyataev
Mordovia State University
Email: F.Kusmartsev@lboro.ac.uk
俄罗斯联邦, Saransk, 430005
A. Nikolaev
Skobeltsyn Institute of Nuclear Physics; Moscow Institute of Physics and Technology (State University)
Email: F.Kusmartsev@lboro.ac.uk
俄罗斯联邦, Moscow, 119991; Dolgoprudnyi, Moscow region, 141700
Y. Dakhnovsky
Department of Physics and Astronomy
Email: F.Kusmartsev@lboro.ac.uk
美国, Laramie, WY, 82071
A. Bukharaev
Zavoisky Institute for Physics and Technology, Kazan Scientific Center; Kazan Federal University
Email: F.Kusmartsev@lboro.ac.uk
俄罗斯联邦, Kazan, 420029; Kazan, 420008
A. Shorokhov
Mordovia State University
Email: F.Kusmartsev@lboro.ac.uk
俄罗斯联邦, Saransk, 430005
D. Filatov
Lobachevsky State University of Nizhny Novgorod
Email: F.Kusmartsev@lboro.ac.uk
俄罗斯联邦, Nizhny Novgorod, 603950
M. Semenov
Department of Physics
Email: F.Kusmartsev@lboro.ac.uk
俄罗斯联邦, Penza, 440026
V. Krevchik
Department of Physics
Email: F.Kusmartsev@lboro.ac.uk
俄罗斯联邦, Penza, 440026
A. Aringazin
Institute for Basic Research
Email: F.Kusmartsev@lboro.ac.uk
哈萨克斯坦, Astana, 010008
补充文件
