Structure of ultrahigh molecular weight polyethylene–air counterflow flame


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The combustion of ultrahigh molecular weight polyethylene (UHMWPE) in airflow perpendicular to the polyethylene surface (counterflow flame) was studied in detail. The burning rate of pressed samples of UHMWPE was measured. The structure of the UHMWPE–air counterflow flame was first determined by mass spectrometric sampling taking into account heavy products. The composition of the main pyrolysis products was investigated by mass spectrometry, and the composition of heavy hydrocarbons (C7—C25) in products sampled from the flame at a distance of 0.8 mm from the UHMWPE surface was analyzed by gas-liquid chromatography mass-spectrometry. The temperature and concentration profiles of eight species (N2, O2, CO2, CO, H2O, C3H6, C4H6, and C6H6) and a hypothetical species with an average molecular weight of 258.7 g/mol, which simulates more than 50 C7—C25 hydrocarbons were measured. The structure of the diffusion flame of the model mixture of decomposition products of UHMWPE in air counterflow was simulated using the OPPDIF code from the CHEMKIN II software package. The simulation results are in good agreement with experimental data on combustion of UHMWPE.

Sobre autores

M. Gonchikzhapov

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch; Novosibirsk State University

Autor responsável pela correspondência
Email: munko2010@yandex.ru
Rússia, Vladivostok, 630090; Vladivostok, 630090

A. Paletsky

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch

Email: munko2010@yandex.ru
Rússia, Vladivostok, 630090

A. Tereshchenko

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch

Email: munko2010@yandex.ru
Rússia, Vladivostok, 630090

I. Shundrina

Novosibirsk State University; Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch

Email: munko2010@yandex.ru
Rússia, Vladivostok, 630090; Vladivostok, 630090

L. Kuibida

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch; Novosibirsk State University

Email: munko2010@yandex.ru
Rússia, Vladivostok, 630090; Vladivostok, 630090

A. Shmakov

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch; Novosibirsk State University

Email: munko2010@yandex.ru
Rússia, Vladivostok, 630090; Vladivostok, 630090

O. Korobeinichev

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch; Far Eastern Federal University

Email: munko2010@yandex.ru
Rússia, Vladivostok, 630090; Vladivostok, 690950

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016