On Numerical Modeling of the Multidimentional Dynamic Systems under Random Perturbations with the 2.5 Order of Strong Convergence
- 作者: Kuznetsov D.F.1
-
隶属关系:
- Peter the Great St. Petersburg Polytechnic University
- 期: 卷 80, 编号 5 (2019)
- 页面: 867-881
- 栏目: Stochastic Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/151386
- DOI: https://doi.org/10.1134/S0005117919050060
- ID: 151386
如何引用文章
详细
Numerical modeling methods with a strong convergence of order 2.5 are developed for the multidimensional dynamic systems under random perturbations described by Itô stochastic differential equations. Special attention is paid to the numerical modeling methods of the multiple Itô stochastic integrals of multiplicities 1–5 in terms of the mean-square convergence criterion, which are required to implement the former methods.
作者简介
D. Kuznetsov
Peter the Great St. Petersburg Polytechnic University
编辑信件的主要联系方式.
Email: sde_kuznetsov@inbox.ru
俄罗斯联邦, St. Petersburg
补充文件
