Stationary probability distribution for states of G-networks with constrained sojourn time
- 作者: Malinkovskii Y.V.1,2
-
隶属关系:
- Skorina Gomel State University
- Tomsk State National Research University
- 期: 卷 78, 编号 10 (2017)
- 页面: 1857-1866
- 栏目: Stochastic Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/150705
- DOI: https://doi.org/10.1134/S0005117917100095
- ID: 150705
如何引用文章
详细
We consider an exponential queueing network that differs from a Gelenbe network (with the usual positive and so-called negative customers), first, in that the sojourn time of customers at the network nodes is bounded by a random value whose conditional distribution for a fixed number of customers in a node is exponential. Second, we significantly relax the conditions on possible values of parameters for incoming Poisson flows of positive and negative customers in Gelenbe’s theorem. Claims serviced at the nodes and customers leaving the nodes at the end of their sojourn time can stay positive, become negative, or leave the network according to different routing matrices. We prove a theorem that generalizes Gelenbe’s theorem.
作者简介
Yu. Malinkovskii
Skorina Gomel State University; Tomsk State National Research University
编辑信件的主要联系方式.
Email: malinkovsky@gsu.by
白俄罗斯, Gomel; Tomsk
补充文件
