Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 80, № 4 (2019)

Reviews

Consensus in Asynchronous Multiagent Systems. I. Asynchronous Consensus Models

Kozyakin V., Kuznetsov N., Chebotarev P.

Аннотация

We present a survey of results on models of consensus in asynchronous multiagent systems with discrete and continuous time. We consider mathematical methods developed over recent years, which are used in the analysis of stability, stabilization, and consensus problems for linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of a set of matrices to analyze the rate of convergence of matrix products with factors drawn from certain sets of matrices with special properties.

Automation and Remote Control. 2019;80(4):593-623
pages 593-623 views

Linear Systems

On Stabilization of Some Delayed Systems

Grebenshchikov B.

Аннотация

This paper considers the stabilization problem of two interconnected linear subsystems of differential equations with constant delay; one of the subsystems has an exponential factor in the right-hand side. Sufficient conditions for the stability of this system are established and then used for its stabilization.

Automation and Remote Control. 2019;80(4):624-633
pages 624-633 views

Stochastic Systems

Refined Estimation of the Bellman Function for Stochastic Optimal Control Problems with Probabilistic Performance Criterion

Azanov V., Kan Y.

Аннотация

In this paper, the optimal control problem for a discrete-time stochastic system with a general-form probabilistic criterion is considered. Using dynamic programming and the properties of the Bellman function, new two-sided bounds of this function that refine the earlier results are constructed. The derived bounds are then adopted to justify the application of the modified strategy that is optimal in the two-step investment portfolio management problem under risk to the corresponding multistep problem. An example that illustrates the advantages of such a strategy over other well-known strategies is given.

Automation and Remote Control. 2019;80(4):634-647
pages 634-647 views

Stationary Characteristics of an Unreliable Multi-Server Queueing System with Losses and Time Redundancy

Peschansky A.

Аннотация

This paper considers an unreliable restorable multi-server queueing system with losses in which failures may occur during requests service; in case of such failures, requests are served using a random time redundancy. The incoming flow is assumed to be elementary and all other random variables in the system’s description are assumed to obey a generalform distribution. A semi-Markov model of system’s evolution over time is developed and a stationary distribution of the embedded Markov chain is found. Explicit-form expressions for determining the stationary probabilities and mean stationary sojourn times in different physical states of the system are obtained, which can be used to estimate the time redundancy effect for the stationary characteristics of the system.

Automation and Remote Control. 2019;80(4):648-665
pages 648-665 views

Robust, Adaptive, and Network Control

Comparative Analysis of Robust and Classical Methods for Estimating the Parameters of a Threshold Autoregression Equation

Goryainov V., Goryainova E.

Аннотация

Using computer simulation and a study of the asymptotic distribution, we consider the relative efficiency of M-estimates for the coefficients of the threshold autoregressive equation with respect to the least squares and least absolute deviation estimates. We assume that the updating sequence of the autoregressive equation can have Student’s, logistic, double exponential, normal, or contaminated normal distributions. We prove asymptotic normality of M-estimates with a convex loss function.

Automation and Remote Control. 2019;80(4):666-675
pages 666-675 views

Control in Technical Systems

Integration of an Equipment Complex with a Selected Configuration

Bukov V., Bronnikov A., Ageev A., Gamayunov I.

Аннотация

We pose and solve the problem of the synthesis of dynamic integration matrices with discrete time shift operators that simulate data processing in the integrated computational environment of the designed equipment complex. The developed approach considers a preliminary choice of the configuration of the complex by specifying a pair of configuration matrices that simulate inertialess input and output interfaces of all its heterogeneous and non-universal components. We obtain analytic expressions for complete and reduced sets of integration matrices that ensure that, with the chosen configuration matrices, the prescribed objective function for the complex remains constant. We present a methodical example that demonstrates the methodology and effectiveness of the proposed approach.

Automation and Remote Control. 2019;80(4):676-692
pages 676-692 views

Optimization, System Analysis, and Operations Research

Accelerated Directional Search with Non-Euclidean Prox-Structure

Vorontsova E., Gasnikov A., Gorbunov E.

Аннотация

We consider smooth convex optimization problems whose full gradient is not available for their numerical solution. In 2011, Yu.E. Nesterov proposed accelerated gradient-free methods for solving such problems. Since only unconditional optimization problems were considered, Euclidean prox-structures were used. However, if one knows in advance, say, that the solution to the problem is sparse, or rather that the distance from the starting point to the solution in 1-norm and in 2-norm are close, then it is more advantageous to choose a non- Euclidean prox-structure associated with the 1-norm rather than a prox-structure associated with the 1-norm. In this work we present a complete justification of this statement. We propose an accelerated descent method along a random direction with a non-Euclidean prox-structure for solving unconditional optimization problems (in further work, we propose to extend this approach to an accelerated gradient-free method). We obtain estimates of the rate of convergence for the method and show the difficulties of transferring the above-mentioned approach to conditional optimization problems.

Automation and Remote Control. 2019;80(4):693-707
pages 693-707 views

Optimal Insurance Strategy in the Individual Risk Model under a Stochastic Constraint on the Value of the Final Capital

Golubin A., Gridin V.

Аннотация

We solve a problem of optimal risk control in the static model by choosing an admissible insurance policy, where the objective functional is the so-called Markowitz utility functional, i.e., a functional that depends only on the mean value and standard deviation of the insurer’s final capital after an insurance transaction. Interests of the insurer are taken into account by introducing probabilistic or, more precisely, quantile constraints (value at risk constraint) on the final capital of the insurer, using a normal distribution to model the distribution of total damage. Additionally, we impose a restriction with probability one on the risk taken from an individual policy holder. Optimal from the point of view of the insurer is the so-called stop-loss insurance. We find explicit forms of conditions for refusing an insurance transaction. We give an example that illustrates the proven results in case of an exponential distribution of claim size.

Automation and Remote Control. 2019;80(4):708-717
pages 708-717 views

An Adaptive Algorithm for Solving the Axial Three-Index Assignment Problem

Medvedev S., Medvedeva O.

Аннотация

In this paper, a probabilistic modification of the minimal element algorithm for solving the axial three-index assignment problem is suggested. Its general idea is to extend the basic greedy-type algorithmic schemes using transition to a probabilistic setup based on variables randomization. The minimization of an objective function is replaced by the minimization of its expectation. The algorithm is implemented in three stages as follows. At the first stage, a motion in the set of random variables is defined. At the second stage, an inequality that expresses the local improvement condition is solved. At the third stage, the probabilities are recalculated, which represents an “adaptation” process. The second stage reveals a feature of the algorithm: the resulting solution depends on the “qualities” of the element itself and also on possible losses of its choice.

Automation and Remote Control. 2019;80(4):718-732
pages 718-732 views

Control Sciences

Minimal-Time Control Problem under Elastic and Viscoelastic Body-Surface Interactions

Lysenko P., Galyaev A.

Аннотация

This paper considers two minimal-time control problems for a mechanical system that consists of a material point and an obstacle interacting with each other through a spring with elastic or viscoelastic properties. The interaction interval is determined by physical conditions of contact. It is studied how interaction time and the coefficient of restitution depend on the viscoelastic properties of the spring. A program module is developed in Python and the behavior of this material point-obstacle system is simulated.

Automation and Remote Control. 2019;80(4):733-743
pages 733-743 views

Optimal Control Problems for Certain Linear Fractional-Order Systems Given by Equations with Hilfer Derivative

Postnov S.

Аннотация

Two optimal control problems are investigated for linear time-invariant systems of fractional order with lumped parameters, which dynamics is described by equations with Hilfer derivative: control problem with minimal norm and time-optimal control problem with control norm constraint. Controls are considered that are the p-integrable or essentially bounded functions. Investigation is conducted by the method of moments. Correctness and solvability conditions of the problem of moments are obtained for the problem statement considered. The optimal control problems stated are solved analytically for several particular cases and the properties of the solutions are investigated depending on fractional differentiation indices and Hilfer fractional differential operator parameters. The comparison is conducted of the results obtained with the known results for integer-order systems and fractional-order systems described by equations with Riemann–Liouville or Caputo derivative.

Automation and Remote Control. 2019;80(4):744-760
pages 744-760 views

Optimal Motion Control of the System Modeled by Double Integrator of Fractional Order

Postnova E.

Аннотация

The problem is investigated of optimal control of a system, described with the model of fractional-order double integrator, in which the initial and final conditions depend on the appropriate time-point selection. Several cases are considered, physically similar to the system transfer from a state of the rest to a state of the uniform linear motion, to a uniformly accelerated and to a periodic motion, and from a uniform to a uniformly accelerated motion. The dependencies are analyzed of the control norm from the control time and from the fractional differentiation index value.

Automation and Remote Control. 2019;80(4):761-772
pages 761-772 views

Application of the Method of Semidefinite Relaxation for Determining the Orientation of a Solid Body in Space

Rapoport L.

Аннотация

In this paper, the semidefinite relaxation method is applied to the problem of determining the orientation of a solid body relative to the local horizon using satellite navigation. It is shown how the initial nonconvex quadratic programming problem is immersed in a wider class of convex optimization problems that allow an effective solution. Instead of the original computationally complex problem, a convex problem was solved, giving an approximate solution of the original problem. The proposed approach is applied to the processing of experimental data.

Automation and Remote Control. 2019;80(4):773-780
pages 773-780 views

Creation of Information-Technological Reserve in Distributed Data Processing Systems

Somov S.

Аннотация

The main stages are presented of creating an information-technological data reserve in distributed automated informational control systems. The reserve is formed on the basis of the results of the analysis of subject areas, regular requests to the system and the analysis of the execution sequence of requests processing procedures. The tasks are set of the reserve structure design and of the optimal allocation of reserve copies among computer network nodes. It is noted that this type of reserve allows reducing the processing time of typical, regular requests to the system due to the fact that the reserve contains the data sets, prepared beforehand and later used at requests processing.

Automation and Remote Control. 2019;80(4):781-790
pages 781-790 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».