Variable Neighborhood Search for a Two-Stage Stochastic Programming Problem with a Quantile Criterion


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider a two-stage stochastic programming problem with a bilinear loss function and a quantile criterion. The problem is reduced to a single-stage stochastic programming problem with a quantile criterion. We use the method of sample approximations. The resulting approximating problem is considered as a stochastic programming problem with a discrete distribution of random parameters. We check convergence conditions for the sequence of solutions of approximating problems. Using the confidence method, the problem is reduced to a combinatorial optimization problem where the confidence set represents an optimization strategy. To search for the optimal confidence set, we adapt the variable neighborhood search method. To solve the problem, we develop a hybrid algorithm based on the method of sample approximations, the confidence method, variable neighborhood search.

Sobre autores

S. Ivanov

Moscow Aviation Institute (National State University)

Autor responsável pela correspondência
Email: sergeyivanov89@mail.ru
Rússia, Moscow

A. Kibzun

Moscow Aviation Institute (National State University)

Email: sergeyivanov89@mail.ru
Rússia, Moscow

N. Mladenović

Emirates College of Technologies; Ural Federal University

Email: sergeyivanov89@mail.ru
Emirados Árabes Unidos, Abu Dhabi; Yekaterinburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2019