Adaptive suboptimal tracking under bounded Lipshitz uncertainty in a discrete minimum-phase object


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider a deterministic problem of asymptotically suboptimal tracking of a bounded reference signal with the output of a scalar discrete minimum-phase object with unknown transition function under a bounded external disturbance and bounded nonlinear stationary uncertainty satisfying a generalized Lipschitz condition. Suboptimality of the tracking is achieved with online estimation and compensation for nonparametric Lipschitz uncertainty in addition to estimating an unknown transition function. To solve the problem we use two parallel estimation algorithms, one of which provides stability for the closed adaptive system, the other, asymptotic tracking optimality with desired accuracy.

Sobre autores

V. Sokolov

Komi Research Center of the Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: sokolov@dm.komisc.ru
Rússia, Syktyvkar

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017