Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 80, № 9 (2019)

Topical Issue

Iterative Learning Control Design Based on State Observer

Emelianova J., Pakshin P.

Аннотация

Linear control systems operating in a repetitive mode with a constant period and returning each time to the initial state are considered. The problem is to find a control law that will employ information about the output variable at the current and previous repetitions and also the estimates of state variables from an observer in order to guarantee the convergence of this variable to a reference trajectory under unlimited increasing the repetitions number. This type of control is known as iterative learning control. The problem is solved using the dissipativity of 2D models and the divergent method of vector Lyapunov functions. The final results are expressed in the form of linear matrix inequalities. An example is given.

Automation and Remote Control. 2019;80(9):1561-1573
pages 1561-1573 views

Bounded Perturbations of Nonlinear Discrete Systems: Estimation of Impact and Minimization

Kuntsevich V.

Аннотация

The problem of minimizing the impact of bounded perturbations on certain classes of controlled nonlinear discrete systems is solved. The radius of the invariant set, an analog of variance for the perturbations of probabilistic nature, is taken as a measure of the impact. The cases of two-sided linear and nonlinear constraints that form multivalued mappings and also the case in which the nonlinear function has a given estimate of the norm are considered.

Automation and Remote Control. 2019;80(9):1574-1590
pages 1574-1590 views

On Convexification of System Identification Criteria

Ljung L.

Аннотация

System Identification is about estimating models of dynamical systems from measured input-output data. Its traditional foundation is basic statistical techniques, such as maximum likelihood estimation and asymptotic analysis of bias and variance and the like. Maximum likelihood estimation relies on minimization of criterion functions that typically are non-convex, and may cause numerical search problems and estimates trapped in local minima. Recent interest in identification algorithms has focused on techniques that are centered around convex formulations. This is partly the result of developments in semidefinite programming, machine learning and statistical learning theory. The development concerns issues of regular-ization for sparsity and for better tuned bias/variance trade-offs. It also involves the use of subspace methods as well as nuclear norms as proxies to rank constraints. A special approach is to look for difference-of-convex programming (DCP) formulations, in case a pure convex criterion is not found. Other techniques are based on Lagrangian relaxation and contraction theory. A quite different route to convexity is to use algebraic techniques to manipulate the model parameterizations. This article will illustrate all this recent development.

Automation and Remote Control. 2019;80(9):1591-1606
pages 1591-1606 views

Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method

Nazin A., Nemirovsky A., Tsybakov A., Juditsky A.

Аннотация

We propose an approach to the construction of robust non-Euclidean iterative algorithms by convex composite stochastic optimization based on truncation of stochastic gradients. For such algorithms, we establish sub-Gaussian confidence bounds under weak assumptions about the tails of the noise distribution in convex and strongly convex settings. Robust estimates of the accuracy of general stochastic algorithms are also proposed.

Automation and Remote Control. 2019;80(9):1607-1627
pages 1607-1627 views

Robust Identification under Correlated and Non-Gaussian Noises: WMLLM Procedure

Poznyak A.

Аннотация

The paper represents the main ideas of Robust Identification Theory, which was initiated by Ya.Z. Tzypkin in 80s of the past century. Here we demonstrate that the parallel application of both the “Whitening Procedure” and the recurrent min-max version of the “Maximum Likelihood Method” (MLLM), guarantees the property of Asymptotic Consistency of this procedure. The information Cramér–Rao inequality is also obtained and it is shown that this combined procedure attains this information bound. This means that for wide class of regular observations of ARX (auto regression with exogenous input) models, there does not exist any other identification algorithm, estimating asymptotically unknown parameters “quicker” then the procedure discussed here, if the distribution of the white noise at the input of the forming filter is known exactly. The main specific feature of this method consists in the possible consideration of external non-Gaussian white noise (defined on the given class of admissible distributions) in the input of the forming filter, making the noise sequence, affecting the input of ARX-dynamics, non-Gaussian, and correlated. The almost sure convergence as well as the Asymptotic Normality of the estimation error are formulated. If the information on the input of the forming filter is uncertain, that is, when the distribution belongs to a given class, then the Huber’s approach is applied using the robust version of MLLM.

Automation and Remote Control. 2019;80(9):1628-1644
pages 1628-1644 views

Transient Response in Matrix Discrete-Time Linear Systems

Polyak B., Smirnov G.

Аннотация

The behavior of trajectories of multidimensional linear discrete-time systems with nonzero initial conditions is considered in two cases as follows. The first case is the systems with infinite degree of stability (the processes of a finite duration); the second case is the stable systems with a spectral radius close to 1. It is demonstrated that in both cases, large deviations of the trajectories from the equilibrium may occur. These results are applied to accelerated unconstrained optimization methods (such as the Heavy-ball method) for explaining the nonmonotonic behavior of the methods, which is observed in practice.

Automation and Remote Control. 2019;80(9):1645-1652
pages 1645-1652 views

Randomized Machine Learning Procedures

Popkov Y.

Аннотация

A new concept of machine learning based on the computer simulation of entropy-optimal randomized models is proposed. The procedures of randomized machine learning (RML) with “hard” and “soft” randomization are considered; the former imply the exact reproduction of empirical balances while the latter their rough reproduction with an accepted approximation criterion. RML algorithms are formulated as functional entropy-linear programming problems. Applications of RML procedures to text classification and the randomized forecasting of migratory interaction of regional systems are presented.

Automation and Remote Control. 2019;80(9):1653-1670
pages 1653-1670 views

Control Systems with Vector Relays

Utkin V., Orlov Y.

Аннотация

The paper presents the evolution of discontinuous control systems starting from a relay with only two output constant values. The relay systems were widely used at the early stage of the feedback control system history. The analysis and design methods for them were developed by Ya. Tsypkin and discussed in his monograph “Theory of relay control systems,” published in 1956. It is shown how a relay function is modified in the so-called variable structure systems, when the relay output cab be equal to one of two continuous state functions. The next step is made in the framework of variable structure systems with vector control. The design procedure for systems with vector relay control relies on selection of a discontinuity surface for each control component. High efficiency of such designed systems results from enforcing sliding modes on the surfaces. Finally, the vector relay unit control is offered. The method is free of the component-wise design and proved to be applicable for infinite-dimensional systems.

Automation and Remote Control. 2019;80(9):1671-1680
pages 1671-1680 views

Synthesis of Anisotropic Suboptimal PID Controller for Linear Discrete Time-Invariant System with Scalar Control Input and Measured Output

Tchaikovsky M., Timin V., Kurdyukov A.

Аннотация

This paper considers the problem of synthesis of a proportional-integral-derivative control law (PID controller) for a linear discrete time-invariant system with scalar control input and measured output operating under influence of the stochastic disturbances with uncertainty described in terms of the mean anisotropy. The closed-loop system abilities to attenuate the disturbances are quantitatively characterized by the anisotropic norm. Sufficient existence conditions for the anisotropic suboptimal controller that stabilizes the closed-loop system and guarantees that its anisotropic norm is strictly bounded by a given threshold value are derived.

Automation and Remote Control. 2019;80(9):1681-1693
pages 1681-1693 views

Large Scale Systems Control

The Degree of Parallelism in Generalized Stochastic Network

Ivanov N.

Аннотация

For the generalized stochastic network the concept of degree of parallelism is entered. The method of determination of this value is offered. It makes the choice of the minimum number of performers of the network at which there is no formation of queues for passing of arcs.

Automation and Remote Control. 2019;80(9):1694-1703
pages 1694-1703 views

Synthesis of a Multifunctional Tracking System in Conditions of Uncertainty

Krasnov D., Utkin A.

Аннотация

Class of affine nonlinear single-input single-output systems, where the relative degree of the equivalent form of the input-output is invariant to the presence of external, unmatched disturbances, is formalized. Methods of synthesis of a multifunctional tracking system in the conditions of parametric uncertainty of the control plant model and incomplete measurements are designed for this class of systems. The original method of synthesis of a low dimension observer for estimating mixed variables (these are combinations of state variables, external influences and their derivatives) by measuring only tracking error is designed for information support of discontinuous control. In this observer, using the linear corrective effects with saturation, the method of separating the movements of observation errors is realized. As an illustration of the developed method, an electromechanical control object is considered-an inverted pendulum controlled by a DC motor. The simulation results for the worst case of varying parameters are given.

Automation and Remote Control. 2019;80(9):1704-1716
pages 1704-1716 views

Article

Large Scale Systems Control

Nikitin D.

Аннотация

In this paper we propose the quaternion-based control system for quadrotor. Adaptive scheme for thrust coefficients identification, based on speed-gradient method, is designed. Proofs of stability are provided, as well the results of numerical simulations. In existing theoretical works, Euler angles are often used as coordinates for describing quadrotor’s coordinates. Equations using those coordinates, however, have a singularity, which prevents their use near certain points. We use quaternions instead, which have no such restrictions. The process of discovering PID-regulator coefficients is known to be tedious, error-prone and specific for each quadcopter. We propose a control scheme in which most of the parameters are physical values, and the rest do not depend on the quadcopter and can be found once for the whole class of the flying machines. An identification algorithm for obtaining physical parameters is also described. MATLAB modelling is used to test and confirm the performance of the proposed scheme.

Automation and Remote Control. 2019;80(9):1717-1733
pages 1717-1733 views

Mathematical Game Theory and Applications

On a Cooperative Game in the Knapsack Problem

Dotsenko S.

Аннотация

The knapsack problem with indivisible items as agents is considered. Each agent has certain weight and utility and wants to be in a knapsack. Such situation is treated as a cooperative game with transferable utility. A characteristic function of this game generalizes the characteristic function associated with the bankruptcy problem but, in contrast to the latter case, it is not convex. Nevertheless, it turns out that the core of this game is non-empty. At the end of the paper some special cases of the knapsack problem are studied. For these cases, the Shapley value, the τ-value and also the nucleolus are found in the explicit form.

Automation and Remote Control. 2019;80(9):1734-1744
pages 1734-1744 views

Spice-Models with Independent Agents

Gorbaneva O.

Аннотация

In this paper, the models of social and private interests coordination engines (SPICE-models) with equal independent agents are studied. The existence and uniqueness of Nash and Pareto-optimal equilibria are proved. These equilibria satisfy resource monotonicity (RM) but not population monotonicity (PM) and anonymity (ANO). Also a result on the system compatibility of the model is established.

Automation and Remote Control. 2019;80(9):1745-1753
pages 1745-1753 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».