Minimum Fuel-Consumption Stabilization of a Spacecraft at the Lagrangian Points


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the motion of a spacecraft described by the differential equations of the three-body problem in the Earth-Moon system. The goal is to stabilize the spacecraft in the neighborhood of the collinear Lagrangian points (which are know to be unstable equilibria) via use of minimum fuel-consumption control. The adopted approach is based on l1-optimization of linearized and discretized equations with terminal conditions being the target Lagrangian point. Therefore, the problem reduces to a linear program, and its solution defines pulse controls for the original three-body equations. Upon reaching the desired neighborhood, the spacecraft performs control-free flight until its deviation from the Lagrangian point exceeds certain prespecified threshold. The correction is then applied repeatedly, so that the spacecraft is kept within a small neighborhood of the unstable equilibrium point.

作者简介

B. Polyak

Trapeznikov Institute of Control Sciences

编辑信件的主要联系方式.
Email: boris@ipu.ru
俄罗斯联邦, Moscow

L. Shalby

Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: lina.khamis@gmail.com
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019