Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A minimization problem for mathematical expectation of a convex loss function over given convex compact X ∈ RN is treated. It is assumed that the oracle sequentially returns stochastic subgradients for loss function at current points with uniformly bounded second moment. The aim consists in modification of well-known mirror descent method proposed by A.S. Nemirovsky and D.B. Yudin in 1979 and having extended the standard gradient method. In the beginning, the idea of a new so-called method of Inertial Mirror Descent (IMD) on example of a deterministic optimization problem in RN with continuous time is demonstrated. Particularly, in Euclidean case the method of heavy ball is realized; it is noted that the new method no use additional point averaging. Further on, a discrete IMD algorithm is described; the upper bound on error over objective function (i.e., of the difference between current mean losses and their minimum) is proved.

作者简介

A. Nazin

Trapeznikov Institute of Control Sciences

编辑信件的主要联系方式.
Email: nazine@ipu.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018