Algorithms for constructing optimal n-networks in metric spaces


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study optimal approximations of sets in various metric spaces with sets of balls of equal radius. We consider an Euclidean plane, a sphere, and a plane with a special non-uniform metric. The main component in our constructions of coverings are optimal Chebyshev n-networks and their generalizations. We propose algorithms for constructing optimal coverings based on partitioning a given set into subsets and finding their Chebyshev centers in the Euclidean metric and their counterparts in non-Euclidean ones. Our results have both theoretical and practical value and can be used to solve problems arising in security, communication, and infrastructural logistics.

Авторлар туралы

A. Kazakov

Matrosov Institute for System Dynamics and Control Theory, Siberian Branch

Хат алмасуға жауапты Автор.
Email: kazakov@icc.ru
Ресей, Irkutsk

P. Lebedev

Krasovskii Institute of Mathematics and Mechanics, Ural Branch

Email: kazakov@icc.ru
Ресей, Yekaterinburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017