The pursuit-evasion game on the 1-skeleton graph of a regular polyhedron. I
- Авторы: Azamov A.A.1, Kuchkarov A.S.1, Holboyev A.G.2
-
Учреждения:
- Institute of Mathematics of the National University of Uzbekistan
- Tashkent State Pedagogical University
- Выпуск: Том 78, № 4 (2017)
- Страницы: 754-761
- Раздел: Mathematical Game Theory and Applications
- URL: https://ogarev-online.ru/0005-1179/article/view/150588
- DOI: https://doi.org/10.1134/S0005117917040166
- ID: 150588
Цитировать
Аннотация
We consider a game between a group of n pursuers and one evader moving with the same maximum velocity along the 1-skeleton graph of a regular polyhedron. The goal of the paper is finding, for each regular polyhedron M, a number N(M) with the following properties: if n ≥ N(M), the group of pursuers wins, while if n < N(M), the evader wins. Part I of the paper is devoted to the case of polyhedra in ℝ3; Part II will be devoted to the case of ℝd, d ≥ 5; and Part III, to the case of ℝ4.
Об авторах
A. Azamov
Institute of Mathematics of the National University of Uzbekistan
Автор, ответственный за переписку.
Email: abdulla.azamov@gmail.com
Узбекистан, Tashkent
A. Kuchkarov
Institute of Mathematics of the National University of Uzbekistan
Email: abdulla.azamov@gmail.com
Узбекистан, Tashkent
A. Holboyev
Tashkent State Pedagogical University
Email: abdulla.azamov@gmail.com
Узбекистан, Tashkent
Дополнительные файлы
