Saddle point mirror descent algorithm for the robust PageRank problem
- Авторы: Nazin A.V.1,2, Tremba A.A.1,2
-
Учреждения:
- Trapeznikov Institute of Control Sciences
- National Research University Higher School of Economics
- Выпуск: Том 77, № 8 (2016)
- Страницы: 1403-1418
- Раздел: Stochastic Systems, Queueing Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/150411
- DOI: https://doi.org/10.1134/S0005117916080075
- ID: 150411
Цитировать
Аннотация
In order to solve robust PageRank problem a saddle-point Mirror Descent algorithm for solving convex-concave optimization problems is enhanced and studied. The algorithm is based on two proxy functions, which use specificities of value sets to be optimized on (min-max search). In robust PageRank case the ones are entropy-like function and square of Euclidean norm. The saddle-point Mirror Descent algorithm application to robust PageRank leads to concrete complexity results, which are being discussed alongside with illustrative numerical example.
Об авторах
A. Nazin
Trapeznikov Institute of Control Sciences; National Research University Higher School of Economics
Автор, ответственный за переписку.
Email: nazine@ipu.ru
Россия, Moscow; Moscow
A. Tremba
Trapeznikov Institute of Control Sciences; National Research University Higher School of Economics
Email: nazine@ipu.ru
Россия, Moscow; Moscow
Дополнительные файлы
