Тенденции изменения солености вод Северной Атлантики по данным океанских реанализов в 1980–2011 гг.
- Авторы: Сухонос П.А.1, Дианский Н.А.2,3,4
-
Учреждения:
- Институт природно-технических систем
- Московский государственный университет им. М.В. Ломоносова
- Институт вычислительной математики им. Г.И. Марчука РАН
- Государственный океанографический институт им. Н.Н. Зубова
- Выпуск: Том 61, № 2 (2025)
- Страницы: 158-169
- Раздел: Статьи
- URL: https://ogarev-online.ru/0002-3515/article/view/296441
- DOI: https://doi.org/10.31857/S0002351525020038
- EDN: https://elibrary.ru/GKNIOI
- ID: 296441
Цитировать
Аннотация
Долгопериодные тенденции изменения солености вод Северной Атлантики (0°–70°с.ш. 8°–80° з.д.) оцениваются по данным нескольких океанских реанализов и объективных анализов в период 1980–2011 гг. Полученные оценки основаны на применении непараметрического метода регрессионного анализа (квантильной регрессии) к среднемесячной солености океана для значения квантиля 0.5. В рассматриваемый период в полосе широт 0°–15° с.ш. в слое 10–50 м соленость уменьшилась на 0.17 ± 0.10 ЕПС. В полосе широт 20°–35° с.ш. увеличение солености в слое 10–400 м составляет 0.08 ± 0.03 ЕПС. В восточной части Субтропической Атлантики (30°–40° с.ш. 25°–45° з.д.) значимое осолонение верхнего 400 м слоя происходит во все месяцы. Это означает расширение в северо-западном направлении области высокой солености в субтропиках. В западной части субполярного круговорота соленость в верхних 400 м за этот 32-летний период увеличилась на 0.20 ± 0.05 ЕПС.
Ключевые слова
Об авторах
П. А. Сухонос
Институт природно-технических систем
Автор, ответственный за переписку.
Email: pasukhonis@mail.ru
Россия, ул. Ленина, 28, Севастополь, 299011
Н. А. Дианский
Московский государственный университет им. М.В. Ломоносова; Институт вычислительной математики им. Г.И. Марчука РАН; Государственный океанографический институт им. Н.Н. Зубова
Email: pasukhonis@mail.ru
Россия, ГСП-1, Ленинские горы, 1, стр. 2, Москва, 119991; ул. Губкина, 8, Москва, 119333; Кропоткинский пер., 6, стр. 1, Москва, 119034
Список литературы
- Дианский Н.А., Багатинский В.А. Термохалинная структура вод Северной Атлантики в различные фазы Атлантической мультидекадной осцилляции // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 6. С. 157–170. https://doi.org/10.31857/S0002-3515556157-170
- Киктев Д.Б., Крыжов В.Н. О сравнении различных методов оценки статистической значимости линейных трендов // Метеорология и гидрология. 2004. № 11. С. 27–38.
- Тимофеев А.А., Стерин А.М. Применение метода квантильной регрессии для анализа изменений характеристик климата // Метеорология и гидрология. 2010. № 5. С. 27–41.
- Balmaseda M.A., Mogensen K., Weaver A.T. Evaluation of the ECMWF ocean reanalysis system ORAS4 // Quart. J. Royal. Meteorol. Soc. 2013. V. 139. № 674. P. 1132–1161. https://doi.org/10.1002/qj.2063
- Balmaseda M.A., Vidard A., Anderson D.L.T. The ECMWF Ocean Analysis System: ORA-S3 // Mon. Wea. Rev. 2008. V. 136. № 8. P. 3018–3034. https://doi.org/10.1175/2008MWR2433.1
- Behringer D.W., Xue Y. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean // Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Ocean, and Land Surface. Seattle, WA, Amer. Meteor. Soc. 2004. [Available online at https://origin.cpc.ncep.noaa.gov/products/people/yxue/pub/13.pdf]
- Boyer T.P., Levitus S., Antonov J.I. et al. Linear trends in salinity for the World Ocean, 1955–1998 // Geophys. Res. Lett. 2005. V. 32. № 1. P. L01604. https://doi.org/10.1029/2004GL021791
- Carton J.A., Chepurin G.A., Chen L. SODA3: a new ocean climate reanalysis // J. Climate. 2018. V. 31. № 17. P. 6967–6983. https://doi.org/10.1175/JCLI-D-18-0149.1
- Chang Y.-S., Zhang S., Rosati A. et al. An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation // Clim. Dyn. 2013. V. 40. № 3–4. P. 775–803. https://doi.org/10.1007/s00382-012-1412-2
- Cheng L., Trenberth K.E., Gruber N. et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle // J. Climate. 2020. V. 33. № 23. P. 10357–10381. https://doi.org/10.1175/JCLI-D-20-0366.1
- Cheng L., Zhu J. Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variation // J. Climate. 2016. V. 29. № 15. P. 5393–5416. https://doi.org/10.1175/JCLI-D-15-0730.1
- Deser C., Phillips A., Bourdette V., Teng H. Uncertainty in climate change projections: the role of internal variability // Clim. Dyn. 2012. V. 38. P. 527–546. https://doi.org/10.1007/s00382-010-0977-x
- Durack P.J. Ocean salinity and the global water cycle // Oceanogr. 2015. V. 28. № 1. P. 20–31. https://doi.org/10.5670/oceanog.2015.03
- Durack P.J., Wijffels S.E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming // J. Climate. 2010. V. 23. № 16. P. 4342–4362. https://doi.org/10.1175/2010JCLI3377.1
- Durack P.J., Wijffels S.E., Matear R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000 // Science. 2012. V. 336. № 6080. P. 455–458. https://doi.org/10.1126/science.1212222
- Fedorov A.V., Pacanowski R.C., Philander S.G., Boccaletti G. The effect of salinity on the wind-driven circulation and the thermal structure of the upper ocean // J. Phys. Oceanogr. 2004. V. 34. № 9. P. 1949–1966. https://doi.org/10.1175/1520-0485(2004)034<1949:TEOSOT>2.0.CO;2
- Good S.A., Martin M.J., Rayner N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates // J. Geophys. Res.: Oceans. 2013. V. 118. № 12. P. 6704–6716. https://doi.org/10.1002/2013JC009067
- Greene C.H., Monger B.C., McGarry L.P. et al. Recent Arctic climate change and its remote forcing of northwest Atlantic shelf ecosystems // Oceanogr. 2012. V. 25. № 3. P. 208–213. https://doi.org/10.5670/oceanog.2012.64
- Holliday N.P., Bersch M., Berx B. et al. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic // Nat. Commun. 2020. V. 11. P. 585. https://doi.org/10.1038/s41467-020-14474-y
- Huang R.X., Luyten J.R., Stommel H.M. Multiple equilibrium states in combined thermal and saline circulation // J. Phys. Oceanogr. 1992. V. 22. № 3. P. 231–246. https://doi.org/10.1175/1520-0485(1992)022<0231: MESICT>2.0.CO;2
- Ishii M., Kimoto M., Kachi M. Historical ocean subsurface temperature analysis with error estimates // Mon. Wea. Rev. 2003. V. 131. № 1. P. 51–73. https://doi.org/10. 1175/1520-0493(2003)131<0051:HOSTAW>2.0.CO;2
- Köhl A. Evaluating the GECCO3 1948–2018 ocean synthesis – a configuration for initializing the MPI‐ESM climate model // Quart. J. Royal. Meteorol. Soc. 2020. V. 146. № 730. P. 2250–2273. https://doi.org/10.1002/qj.3790
- Koеnkеr R. Quantilе Rеgrеssion. Cambridgе: Есonometriс Soсiеty Monographs, 2005. 349 p.
- Li G., Cheng L., Pan Y. et al. A global gridded ocean salinity dataset with 0.5° horizontal resolution since 1960 for the upper 2000 m // Front. Mar. Sci. 2023. V. 10. P. 1108919. https://doi.org/10.3389/fmars.2023.1108919
- Li G.C., Cheng L.J., Zhu J. et al. Increasing ocean stratification over the past half century // Nat. Clim. Chang. 2020. V. 10. № 12. P. 1116–1123. https://doi.org/10.1038/s41558-020-00918-2
- Li Y., Fratantoni P.S., Chen C. et al. Spatio-temporal patterns of stratification on the Northwest Atlantic shelf // Prog. Oceanogr. 2015. V. 134. P. 123–137. https://doi.org/10.1016/j.pocean.2015.01.003
- Liu Y., Cheng L., Pan Y. et al. Climatological seasonal variation of the upper ocean salinity // Int. J. Climatol. 2022. V. 42. № 6. P. 3477–3498. https://doi.org/10.1002/joc.7428
- Mauritzen C., Melsom A., Sutton R.T. Importance of density-compensated temperature change for deep North Atlantic Ocean heat uptake // Nat. Geosci. 2012. V. 5. № 12. P. 905–910. https://doi.org/10.1038/ngeo1639
- Melzer B.A., Subrahmanyam B. Decadal changes in salinity in the oceanic subtropical gyres // J. Geophys. Res.: Oceans. 2017. V. 122. № 1. P. 336–354. https://doi.org/10.1002/2016JC012243
- Osafune S., Masuda S., Sugiura N., Doi T. Evaluation of the applicability of the Estimated State of the Global Ocean for Climate Research (ESTOC) data set // Geophys. Res. Lett. 2015. V. 42. № 12. P. 4903–4911. https://doi.org/10.1002/2015GL064538
- Polyakov I.V., Bhatt U.S., Walsh J.E. et al. Recent oceanic changes in the Arctic in the context of long-term observations // Ecol. Appl. 2013. V. 23. № 8. P. 1745–1764. https://doi.org/10.1890/11-0902.1
- Rabe B., Karcher M., Kauker F. et al. Arctic Ocean basin liquid freshwater storage trend 1992–2012 // Geophys. Res. Lett. 2014. V. 41. № 3. P. 961–968. https://doi.org/10.1002/2013GL058121
- Rahmstorf S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle // Nature. 1995. V. 378. № 6553. P. 145–149. https://doi.org/10.1038/378145a0
- Reverdin G., Friedman A.R., Chafik L. et al. North Atlantic extratropical and subpolar gyre variability during the last 120 years: a gridded dataset of surface temperature, salinity, and density. Part 1: dataset validation and RMS variability // Ocean Dyn. 2019. V. 69. № 3. P. 385–403. https://doi.org/10.1007/s10236-018-1240-y
- Reverdin G., Kestenare E., Frankignoul C., Delcroix T. Surface salinity in the Atlantic Ocean (30°S–50°N) // Prog. Oceanogr. 2007. V. 73. № 3–4. P. 311–340. https://doi.org/10.1016/j.pocean.2006.11.004
- Rhein M., Rintoul S.R., Aoki S. et al. (2013) Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T.F., Qin D., Plattner G.-K. et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Sathyanarayanan A., Köhl A., Stammer D. Ocean salinity changes in the global ocean under global warming conditions. Part I: Mechanisms in a strong warming scenario // J. Climate. 2021. V. 34. № 20. P. 8219–8236. https://doi.org/10.1175/JCLI-D-20-0865.1
- Shi L., Alves O., Wedd R. et al. An assessment of upper ocean salinity content from the Ocean Reanalyses Inter-comparison Project (ORA-IP) // Clim. Dyn. 2017. V. 49. P. 1009–1029. https://doi.org/10.1007/s00382-015-2868-7
- Stammer D., Sena Martins M., Köhler J., Köhl A. How well do we know ocean salinity and its changes? // Progr. Oceanogr. 2021. V. 190. P. 102478. https://doi.org/10.1016/j.pocean.2020.102478
- Tebaldi C., Arblaster J.M., Knutti R. Mapping model agreement on future climate projections // Geophys. Res. Lett. 2011. V. 38. № 23. P. L23701. https://doi.org/10.1029/2011GL049863
- Yamaguchi R., Suga T. Trend and variability in global upper‐ocean stratification since the 1960s // J. Geophys. Res.: Oceans. 2019. V. 124. № 12. P. 8933–8948. https://doi.org/10.1029/2019JC015439
- Zuo H., Balmaseda M.A., Tietsche S. et al. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment // Ocean science. 2019. V. 15. № 3. P. 779–808. https://doi.org/10.5194/os-15-779-2019
Дополнительные файлы
