On the influence of boundary conditions on the instability of geostrophic currents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An analysis of the influence of boundary conditions on the instability of a geostrophic zonal current of finite transverse scale with a vertical parabolic velocity profile of a general form in a vertically limited layer has been carried out. The model is based on the potential vortex equation in the quasi-geostrophic approximation, taking into account the vertical diffusion of mass and momentum. The equation and boundary conditions were reduced to a spectral eigenvalue problem of the Orr–Sommerfeld type. A high-precision analytical-numerical method was used to calculate eigenfunctions and eigenvalues. Two types of conditions at the horizontal boundaries of the layer were considered: the equality of vertical velocity disturbances and buoyancy fluxes to zero (problem I); equality of vertical velocity disturbances and horizontal velocity disturbances to zero (problem II). It is found that the boundary conditions of problem II, which include no-slip conditions, contribute to the stabilization of long-wave unstable disturbances and narrow the range of unstable short-wave disturbances. It is noted, however, that all types of current instability obtained by solving problem I, such as baroclinic instability, instability of the critical layer, as well as new instability, characterized by a phase velocity exceeding the maximum current velocity, also arise when using no-slip boundary conditions, but in a narrower range of changes in the physical parameters of the original equation.

About the authors

N. P. Kuzmina

Shirshov Institute of Oceanology of the RAS

Author for correspondence.
Email: kuzmina@ocean.ru
Russian Federation, Nakhimovsky Prosp., 36, Moscow, 117997

S. L. Skorokhodov

Federal Research Center “Computer Science and Control” of the RAS

Email: sskorokhodov@gmail.com
Russian Federation, str. Vavilov, 44, Moscow, 119333

N. V. Zhurbas

Shirshov Institute of Oceanology of the RAS

Email: kuzmina@ocean.ru
Russian Federation, Nakhimovsky Prosp., 36, Moscow, 117997

D. A. Lyzhkov

Shirshov Institute of Oceanology of the RAS

Email: kuzmina@ocean.ru
Russian Federation, Nakhimovsky Prosp., 36, Moscow, 117997

References

  1. Калашник М.В. К теории симметричной и несимметричной устойчивости зональных геострофических течений // Изв. РАН. Физика атмосферы и океана. 2001. Т. 37. № 3. С. 418–421.
  2. Кузьмина Н.П., Скороходов С.Л., Журбас Н.В., Лыжков Д.А. О неустойчивости геострофического течения с линейным вертикальным сдвигом ско-рости на масштабах интрузионного расслоения // Изв. РАН. Физика атмосферы и океана. 2018. Т. 54. № 1. С. 54–63.
  3. Кузьмина Н.П., Скороходов С.Л., Журбас Н.В., Лыжков Д.А. Описание возмущений океанских геострофических течений с линейным вертикальным сдвигом скорости с учетом трения и диффузии плавучести // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 2. С. 73–85.
  4. Кузьмина Н.П., Скороходов С.Л., Журбас Н.В., Лыжков Д.А. О влиянии трения и диффузии плавучести на динамику геострофических океанских течений с линейным вертикальным профилем скорости // Изв. РАН. Физика атмосферы и океана. 2020. Т. 56. № 6. С. 676–678.
  5. Кузьмина Н.П., Скороходов С.Л., Журбас Н.В., Лыжков Д.А. О видах неустойчивости геострофического течения с вертикальным параболическим профилем скорости // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 2. С. 230–241.
  6. Скороходов С.Л. Численный анализ спектра задачи Орра–Зоммерфельда // Ж. вычисл. матем. и матем. физ. 2007 а. Т. 47. № 10. С. 1672–1691.
  7. Скороходов С.Л. Точки ветвления собственных значений оператора Орра–Зоммерфельда // Докл. РАН. 2007 б. Т. 416. № 5. С. 600–605.
  8. Скороходов С.Л., Кузьмина Н.П. Аналитико-численный метод решения задачи типа Орра–Зоммерфельда для анализа неустойчивости течений в океане // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 6. С. 976–992.
  9. Скороходов С.Л., Кузьмина Н.П. Спектральный анализ модельных течений типа Куэтта применительно к океану // Ж. вычисл. матем. и матем. физ. 2019. T. 59. № 5. С. 106–127.
  10. Скороходов С.Л., Кузьмина Н.П. Спектральный анализ малых возмущений геострофических течений с параболическим вертикальным профилем скорости применительно к океану // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 12. C. 2010–2023.
  11. Скороходов С.Л., Кузьмина Н.П. Аналитико-численный метод для анализа малых возмущений океанских геострофических течений с параболическим вертикальным профилем скорости общего вида // Ж. вычисл. матем. и матем. физ. 2022. T. 62. № 12. C. 2043–2053.
  12. Педлоски Дж. Геофизическая гидродинамика / Под редакцией Каменковича В.М., Монина А.С. М.: Мир, 1984. 812 с.
  13. Шакина Н. П. Лекции по динамической метеорологии. М.: Триада ЛТД, 2013. 160 с.
  14. Cushman-Roisin B. Introduction to the Geophysical Fluid Dynamics. New Jersey 07632, Englewood Cliffs: Prentice Hall, 1994. 320 p.
  15. Eady E.T. Long waves and cyclone waves // Tellus. 1949. V. 1. № 3. P. 33–52.
  16. Kuzmina N.P. Generation of large-scale intrusions at baroclinic fronts: an analytical consideration with a reference to the Arctic Ocean // Ocean Sci. 2016. V. 12. P. 1269–1277. doi: 10.5194/os-12-1269-2016.
  17. Lin C.C. The Theory of Hydrodynamic Stability. Cambridge University Press, 1955. 155 p.
  18. McWilliams James C. Statistical properties of decaying geostrophic turbulence // J. Fluid Mech. 1989. V. 198. P. 199–230.
  19. Miles J.W. Effect of Diffusion on Baroclinic Instability of the Zonal Wind // J. Atmos. Sci. 1965. V. 22. P. 146–151.
  20. Orszag S.A. Accurate solution of the Orr–Sommerfeld equation // J. Fluid Mech. 1971. V. 50. № 4. P. 689–703.
  21. Reddy S.C., Schmid P.J., Henningson D.S. Pseudospectra of the Orr–Sommerfeld Operator // SIAM J. Appl. Math. 1993. V. 53. № 1. P. 15–47.
  22. Shkalikov A.A. Spectral portraits of the Orr–Sommerfeld operator with large Reynolds numbers // J. Math. Sci. 2004. V. 124. № 6. P. 5417–5441.
  23. Skorokhodov S.L., Kuzmina N.P. 2024, Analytical-Numerical Method for Solving the Spectral Problem in a Model of Geostrophic Oceanic Currents // Comput. Math. Math. Phys. 2024. V. 64. № 6. P. 1240–1253.
  24. Stern M.E. Ocean circulation physics. Academic press, 1975. 246 p.
  25. Trefethen L.N. Pseudospectra of linear operators // SIAM Rev. 1997. V. 39. № 3. P. 383–406.
  26. Zhurbas N.V. On the eigenvalue spectra for a model problem describing formation of the large-scale intrusions in the Arctic basin // Fundament. Applied Hydrophys. 2018. V. 11. № 1. P. 40–45.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».