Acoustic monitoring of internal gravity waves in the lower troposphere using an anti-hail acoustic cannon
- Authors: Chunchuzov I.P.1, Perepelkin V.G.1, Kulichkov S.N.1, Popov O.E.1, Azizyan G.V.1, Vardanyan A.A.2, Ayvazyan G.E.2
-
Affiliations:
- Obukhov Institute of Atmospheric Physics
- National Polytechnic University of Armenia
- Issue: Vol 60, No 6 (2024)
- Pages: 851-868
- Section: Articles
- URL: https://ogarev-online.ru/0002-3515/article/view/282051
- DOI: https://doi.org/10.31857/S0002351524060011
- EDN: https://elibrary.ru/HVKRCB
- ID: 282051
Cite item
Abstract
The results of study of the influence of internal gravity waves (IGWs) on the spatial and temporal variability of the lower troposphere using a triangular network of three microbarographs and an anti-hail acoustic cannon installed in Talin (Armenia) are presented. By coherent analysis of pressure fluctuations measured at different points, the IGWs generated by thunderstorm cells about 5-6 h before the passage of the cells over the network of microbarographs were detected. The regularities of changes with time of phase speeds and directions of propagation of IGWs precursors of thunderstorms were studied. The possibility of monitoring of IGWs in the troposphere by measuring temporal fluctuations of the travel time of acoustic pulses along the ray-paths connecting the anti-hail cannon with spatially separated acoustic receivers has been demonstrated. Vertical profiles of wind velocity fluctuations in certain layers of the lower troposphere up to a height of 800 m were reconstructed from the shapes and travel times of acoustic pulses with a shock front scattered by a fine layered structure of wind velocity and temperature in the stably-stratified lower troposphere. Due to the high vertical resolution (of the order of 1 m) of the method of pulsed acoustic sounding of the lower troposphere used here, the vertical wavenumber spectra of layered inhomogeneities of wind velocity in the range of short vertical scales, from one to tens of meters, were obtained for the first time and theoretically interpreted.
Full Text

About the authors
I. P. Chunchuzov
Obukhov Institute of Atmospheric Physics
Author for correspondence.
Email: igor.chunchuzov@gmail.com
Russian Federation, 3 Pyzhevsky Per., 119017 Moscow
V. G. Perepelkin
Obukhov Institute of Atmospheric Physics
Email: igor.chunchuzov@gmail.com
Russian Federation, 3 Pyzhevsky Per., 119017 Moscow
S. N. Kulichkov
Obukhov Institute of Atmospheric Physics
Email: igor.chunchuzov@gmail.com
Russian Federation, 3 Pyzhevsky Per., 119017 Moscow
O. E. Popov
Obukhov Institute of Atmospheric Physics
Email: igor.chunchuzov@gmail.com
Russian Federation, 3 Pyzhevsky Per., 119017 Moscow
G. V. Azizyan
Obukhov Institute of Atmospheric Physics
Email: igor.chunchuzov@gmail.com
Russian Federation, 3 Pyzhevsky Per., 119017 Moscow
A. A. Vardanyan
National Polytechnic University of Armenia
Email: igor.chunchuzov@gmail.com
Armenia, 105 Teryan, Yerevan
G. E. Ayvazyan
National Polytechnic University of Armenia
Email: igor.chunchuzov@gmail.com
Armenia, 105 Teryan, Yerevan
References
- Бовшеверов В.М., Грачев А.И., Ломадзе С.О. Жидкостный микробарограф // Изв. АН СССР. Физика атмосферы и океана. 1979. Т. 15. № 2. C. 1215–1217.
- Грачев А.И., Данилов С.Д., Куличков С.Н., Свертилов А.И. Основные характеристики внутренних гравитационных волн в нижней атмосфере от конвективных штормов // Изв. АН. Физика атмосферы и океана. 1994. Т. 30. № 6. C. 759–767.
- Данилов С.Д., Свертилов А.И. ВГВ, генерируемые при прохождении гроз // Изв. АН СССР. Физика атмосферы и океана. 1991. Т. 27. № 3. С. 234–242.
- Каллистратова М.А., Кузнецов Р.Д., Петенко И.В. Реализация идей А.М. Обухова о наземном дистанционном зондировании нижней тропосферы акустическими и электромагнитными волнами // В сб. Труды конференции «Турбулентность, динамика атмосферы и климата» / Под. ред. Г.С. Голицына, И.И Мохова. М: ГЕОС, 2014. C. 593–620.
- Куличков С.Н., Н.Д. Цыбульская, И.П. Чунчузов, В.А. Гордин, Ф.Л. Быков, А.И. Чуличков, В.Г. Перепелкин, Г.А. Буш, Е.В. Голикова. Исследования внутренних гравитационных волн от атмосферных фронтов в московском регионе // Изв. РАН. Физика атмосферы и океана. 2017. Т. 53. № 4. С. 455–469.
- Куличков С.Н, И.П. Чунчузов, О.Е. Попов, В.Г. Перепелкин, Е.В. Голикова, Г.А. Буш, И.А. Репина, Н.Д. Цыбульская, Г.И. Горчаков. Внутренние гравитационные и инфразвуковые волны во время урагана в Москве 29 мая 2017 г. // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 2. C. 32–40.
- Люлюкин В.С., Каллистратова М.А., Кузнецов Р.Д., Кузнецов Д.Д., Чунчузов И.П., Широкова Г.Ю. Внутренние гравитационно-сдвиговые волны в атмосферном пограничном слое по данным акустической локации // Изв. РАН. Физика атмосферы и океана. 2015. V. 51. P. 218–229.
- Сапунов М.В., Мельникова И.Н., Донченко В.К., Самуленков Д.А, Кузнецов А.Д. Сопоставление вертикальных профилей скорости и направления ветра, полученных на основе лидарных и аэрологических измерений // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13. № 1. С. 149–160.
- Перепелкин В.Г., Куличков С.Н., Чунчузов И.П. Изучение оптимальных условий регистрации информативного сигнала при исследовании пограничного слоя атмосферы акустическим методом частичных отражений // Изв. РАН. Физика атмосферы и океана. 2013. Т. 49. № 2. C. 180–195.
- Шакина Н.П., Иванова А.Р. Прогнозирование метеорологических условий для авиации. Росгидромет, 2016. 308 с.
- Чунчузов И.П, Перепелкин В.Г., Куличков С.Н., Горчаков Г.И., Каллистратова М.А., Джола А., Лу Джун, Пенсяо Тэнг, Ичун Янг, Ву Лин, Килонг Ли, Ели Сан. Влияние внутренних гравитационных волн на метеорологические поля и газовые примеси вблизи городов Москва и Пекин // Изв. АН. Физика атмосферы и океана. 2017a, Т. 53. № 5. С. 597–611.
- Чунчузов И.П., Перепелкин В.Г., Попов О.Е., Куличков С.Н., Варданян А.А., Айвазян Г.Е., Хачикян Х.З. Исследование характеристик тонкой слоистой структуры нижней тропосферы с помощью акустического импульсного зондирования // Изв. АН. Физика атмосферы и океана. 2017 б. Т. 53. № 3. C. 279–293.
- Чунчузов И.П., Перепелкин В.Г., Куличков С.Н., Попов О.Е., Варданян А.А., Айвазян Г.Е. Рассеяние акустического импульса на анизотропных неоднородностях устойчиво-стратифицированного пограничного слоя атмосферы // В сб. трудов XXXII сессии Российского акустического общества. Москва. 2019. ГЕОС. C. 53–59.
- Aramyan A.R., Galechyan G.A., Vardanyan A.A. A study of acoustic waves generated by the shock wave of an antihail gun // Acoustical Physics. 2011. V. 57. № 3. P. 432–436.
- Avilov K.V. Pseudo-differential parabolic eduations of sound propagation in the slowly range-dependent ocean and their numerical solutions // Acoust. Phys. 1995. V. 41. № 1. P. 1–7.
- Balsley B.B., Lawrence D.A., Woodman R.F., Fritts D.C. Fine-scale characteristics of temperature, wind, and turbulence in the lower atmosphere (0–1300 m) over the south Peruvian coast // Boundary-Layer Meteorology. 2013. V. 147. P. 165–178. https://doi.org/10.1007/s10546-012-9774-x.
- Banakh V.A., Smalikh I.N. The Impact of Internal Gravity Waves on the Spectra of Turbulent Fluctuations of Vertical Wind Velocity in the Stable Atmospheric Boundary Layer // Remote Sens. 2023. V. 15. P. 2894. https://doi.org/10.3390/rs15112894.
- Blanc E., Farges T., Le Pichon A. and Heinrich P. Ten year observations of gravity waves from thunderstorms in western Africa // J. Geophys. Res. Atmos. 2014. V. 119. P. 6409–6418. doi:10.1002/ 2013JD020499.
- Blumen W., Banta R., Durns S.P., Fritts D.C., Newsom R., Poulos G.S., Sun J. Turbulence statistics of a Kelvin– Helmholtz billow event observed in the nightime boundary layer during the CASES-99 field program // Dyn. Atmos.Oceans. 2001. V. 34. P. 189–204.
- Bowman H.S., Bedard A.J. Observations of infrasound and subsonic pressure disturbances related to severe weather // Geophys. J. Roy. Astron. Soc.. 1971. V. 26. P. 215–242.
- Birner T. Fine‐scale structure of the extratropical tropopause region. J. Geophys. Res. 2006. V. 111. D04104. doi: 10.1029/2005JD006301.
- Caughey S.J. and Readings C.J. An observation of waves and turbulence in the earth’s boundary layer // Boundary–Layer Meteorol. 1975. V. 9. P. 279–296.
- Chimonas G. and Peltier W.R. On severe storm acoustic signals observed at ionospheric heights // J. Atmos. Terr. Phys. 1974. V. 36. P. 821–828.
- Chimonas G. Steps, Waves and Turbulence in the Stably Stratified Planetary Boundary Layer // Boundary-Layer Meteorol. 1999. V. 90. P. 398–416.
- Chunchuzov I., Kulichkov S., Otrezov A., Perepelkin V. Acoustic pulse propagation through a fluctuating stably stratified atmospheric boundary layer // J. Acoust. Soc. Am. 2005. V.117. P. 1868–1879.
- Chunchuzov I., Kulichkov S.N., Perepelkin V., Ziemann A., Arnold K. and Kniffka A. Acoustic tomographic study of the mesoscale coherent structures in the lower atmosphere // Proc. Meetings Acoust. 2007. http://scitation.aip.org/confst/ASA/pub/8/4pPA5.
- Chunchuzov I., Kulichkov S., Perepelkin V., Ziemann A., Arnold K., Kniffka A. Mesoscale variations in acoustic signals induced by atmospheric gravity waves // J. Acoust. Soc. Am. 2009. V. 125. № 2. P. 651–664.
- Chunchuzov I., Kulichkov S., Perepelkin V., Popov O., Firstov P., Assink J.D., Marchetti E. Study of the wind velocity-layered structure in the stratosphere, mesosphere and lower thermosphere by using infrasound probing of the atmosphere // J. Geophys. Res. 2015. V. 120. doi: 10.1002/2015JD023276.
- Chunchuzov I.P. Nonlinear formation of the three-dimensional spectrum of mesoscale wind velocity and temperature fluctuations in a stably stratified atmosphere // J. Atmos. Sci. 2018. V. 75. P. 3447–3467.
- Chunchuzov I., Kulichkov S., Popov O., Perepelkin V., Vardanyan A. and Ayvazyan G. Physical modeling of waveguide propagation and scattering of infrasound signals in the atmosphere. // Proceed. 18-th Long Range Sound Propagation (LRSP) Symposium. 2020. University of the District of Columbia (Washington).
- Chunchuzov I., Kulichkov S., Popov O., Perepelkin V., Vardanyan A. and Ayvazyan G. Atmospheric boundary layer as a laboratory for modeling infrasound propagation and scattering in the atmosphere. // Pure and Applied Geophysics. 2021. V. 178. № 2. doi: 10.1007/s00024-020-02507.
- Chunchuzov I.P., Kulichkov S.N., Popov O.E., and Perepelkin V.G. Infrasound Generation by Meteorological Fronts and Its Propagation in the Atmosphere // J. Atm. Sci. 2021. V. 78. № 5. P. 1673–1686.
- Chunchuzov I., Kulichkov S., Popov O., Perepelkin V., Vardanyan A. and Ayvazyan G. Infrasound and Internal Gravity Waves generated by Meteorological Fronts // Proceedings of Meetings on Acoustics. 2023. V. 0. Acoustical Society of America. https://doi.org/10.1121/2.0001713.
- Dalaudier F., Sidi C., Crochet M., Vernin J. Direct evidence of sheets in the atmospheric temperature field // J. Atmos. Sci. 1994. V. 51. P. 237–248.
- Danilov S.D., and Chunchuzov I.P. Possible Mechanism of Layered Structure Formation in a Stably Stratified Atmospheric Boundary Layer // Izv. Atmos. Ocean. Phys. 1992. V. 28. P. 684–688.
- Einaudi F., and Finnigan J.J. Wave-turbulence dynamics in the stably stratified boundary layer // J. Atmos. Sci. 1993. V. 50. P. 1841–1863.
- Fritts D.C., Wang L., Werne J.A. Gravity Wave–Fine Structure Interactions. Part I: Influences of Fine Structure Form and Orientation on Flow Evolution and Instability // J. Atmos. Sci. 2013. V. 70. P. 3710–3734.
- Georges T.M. Infrasound from convective storms: Examining the evidence // Reviews of Geophysics. 1973. V. 11. № 3. P. 571–594.
- Gossard E.E. and Hooke W.H. Waves in the atmosphere. 1975. Elsevier, Amsterdam, 456 pp.
- Gossard E.E., Gaynor J.F., Zamor R.J., and Neff W.D. Fine structure of elevated stable layers observed by sounder and in situ Tower Sensors // J. Atmos. Sci. 1985. V. 42. P. 2156–2169.
- Jones R.M. and Georges T.M. Infrasound from convective storms. III. Propagation to the ionosphere // J. Acoust. Soc. Am. 1976. V. 59. P. 765. https://doi.org/10.1121/1.380942.
- Hung R.J., Plan T. and Smith R.E. Coupling of ionosphere and troposphere during the occurrence of isolated tornadoes on November 20, 1973 // J. Geophys. Res. 1979. V. 84. P. 1261–1267.
- Kantha et al. Atmospheric structures in the troposphere as revealed by high-resolution backscatter images from MU radar operating in range imaging mode // Progress in Earth and Planetary Science. 2019. https://doi.org/10.1186/s40645-019-0274-1
- Martin S., Bange J. and Beyrich F. Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo” // Atmos. Meas. Tech. 2011. V. 4. P. 705–716.
- Lay E.H., Shao X.-M., Kendrick A.K. and Carrano C.S. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms // J. Geophys. Res. Space Physics. 2015. V.120. P. 6010–6020. doi: 10.1002/2015JA021334.
- Laštovička J. Forcing of the ionosphere by waves from below // J. Atmos. Sol.-Terr. Phys. 2006. V. 68. P. 479–497. doi: 10.1016/j.jastp.2005.01.01.
- Hubert Luce et al. Vertical structure of the lower troposphere derived from MU radar, unmanned aerial vehicle, and balloon measurements during ShUREX 2015 // Progress in Earth and Planetary Science. 2018. V. 5. № 29. https://progearthplanetsci.springeropen.com/ articles/10.1186/s40645-018-0187-4.
- Nalbandyan O. The Clouds Microstructure and the Rain Stimulation by Acoustic Waves // Atmospheric and Climate Sciences. 2011. V. 1. P. 86–90 doi: 10.4236/acs.2011.13009.
- Plougonven R. and Zhang F. Internal gravity waves from atmospheric jets and fronts // Reviews of Geophysics, American Geophysical Union. 2014. V. 52. № 1. P. 33–76.
- Šauli P. and Boška J. Tropospheric events and possible related gravity wave activity effects on the ionosphere // J. Atmos. Sol.-Terr. Phys. 2001. V. 63. P. 945–950.
- Stobie J.G., Einaudi F. and Uccellini L.W. A case study of gravity waves-convective storms interaction // J. Atm. Sci. 1983. V. 40. P. 2804–2830.
- Staquet C. and Sommeria J. Internal gravity waves: From instabilities to turbulence // Annual Review of Fluid Mechanics. 2002. V. 34. P. 559–593.
- Sun J. et al. Review of wave-turbulence interactions in the stable atmospheric boundary layer // Rev. Geophys. 2015a. V.53. doi: 10.1002/2015RG000487.
- Sun J., Mahrt L., Nappo C., Lenschow D.H. Wind and Temperature Oscillations Generated by Wave–Turbulence Interactions in the Stably Stratified Boundary Layer // J. Atmos. Sci. 2015b. V. 72. P. 1484–1503.
- Tsuda T. Characteristics of atmospheric gravity waves observed using the MU (middle and upper atmosphere) radar and GPS (global positioning system) radio occultation // Proc. Japan Acad. 2014. V. 90B. P. 12–27.
- Uccellini L.W. Historical Perspective on the Research and Operational Application of Weather-Significant Gravity Waves. // Presentation at SPARC Gravity Wave Symposium, May 16–20. 2016. Pennsylvania State University US.
- Vardanyan A.A., Galechyan G.A. Acoustic waves and flows of negative ions for stimulation of the precipitations // Intеrnational Journal of Altern. Energy and Ecology. 2012. V. 8. P. 85–90.
- Vardanyan А.А., Galechyan G.A., Perepelkin V.G., Chunchuzov I.P. On generation of a shock wave in a hail protection setup // Technical Physics. 2011. V. 56. № 10. P. 1524–1526.
- Zeri M. and Sá L.D.A. Horizontal and Vertical Turbulent Fluxes Forced by a Gravity Wave Event in the Nocturnal Atmospheric Surface Layer Over the Amazon Forest // Boundary-Layer Meteorol. 2011. V. 138. P. 413–431. doi: 10.1007/s10546-010-9563-3.
Supplementary files
