ТРЕХМЕРНОЕ МНОЖЕСТВО ДОСТИЖИМОСТИ ДЛЯ МАШИНЫ ДУБИНСА: СВЕДЕНИЕ ОБЩЕГО СЛУЧАЯ ОГРАНИЧЕНИЙ НА ПОВОРОТЫ К КАНОНИЧЕСКОМУ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В математической теории управления “машина Дубинса” – нелинейная модель движения, описываемая дифференциальными соотношениями, в которой скалярное управление определяет мгновенную угловую скорость поворота. Величина линейной скорости предполагается постоянной. Фазовый вектор системы является трехмерным. Он включает в себя две координаты геометрического положения и одну координату, имеющую смысл угла наклона вектора скорости. Подобная модель является очень популярной и используется в различных задачах управления, связанных с движением самолета в горизонтальной плоскости, c упрощенным описанием движения автомобиля или небольших надводных и подводных аппаратов и т.д. Скалярное управление может быть стеснено либо симметричным ограничением (когда минимальные радиусы поворота влево и вправо совпадают), либо несимметричным (когда поворот возможен в обе стороны, но минимальные радиусы поворотов не совпадают). Обычно задачи с симметричными и несимметричными ограничениями рассматриваются отдельно. Показано, что при построении множества достижимости “в момент” случай несимметричного ограничения может быть сведен к симметричному случаю.

Об авторах

В. С. Пацко

Институт математики и механики УрО РАН

Email: patsko@imm.uran.ru
Россия, Екатеринбург

А. А. Федотов

Институт математики и механики УрО РАН

Автор, ответственный за переписку.
Email: patsko@imm.uran.ru
Россия, Екатеринбург

Список литературы

  1. Dubins L.E. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents // American J. Math. 1957. V. 79. № 3. P. 497–516.
  2. Марков А.А. Несколько примеров решения особого рода задач о наибольших и наименьших величинах // Сообщ. Харьков. матем. общ. Вторая сер. 1889. Т. 1. Вып. 2. С. 250–276.
  3. Айзекс Р. Дифференциальные игры. М.: Мир, 1967.
  4. Patsko V.S., Fedotov A.A. Three-dimensional Reachable Set for the Dubins Car: Foundation of Analytical Description // Commun. Optim. Theory. 2022. V. 2022. Article ID 23. P. 1–42.
  5. Laumond J.-P. (ed.) Robot Motion Planning and Control. Berlin; Heidelberg: Springer-Verlag, 1998 (Lecture Notes in Control and Information Sciences. V. 229).
  6. LaValle S.M. Planning Algorithms. Cambridge: Cambridge University Press, 2006.
  7. Бузиков М.Э., Галяев А.А. Перехват подвижной цели машиной Дубинса за кратчайшее время // АиТ. 2021. № 5. С. 3–19.
  8. Ардентов А.А., Локуциевский Л.В., Сачков Ю.Л. Решение серии задач оптимального управления с 2-мерным управлением на основе выпуклой тригонометрии // Доклады Российской академии наук. Математика, информатика, процессы управления. 2020. Т. 494. № 1. С. 86–92.
  9. Хабаров С.П., Шилкина М.Л. Геометрический подход к решению задачи для машин Дубинса при формировании программных траекторий движения // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21. № 5. С. 653–663.
  10. Зимовец А.А., Матвийчук А.Р., Ушаков А.В., Ушаков В.Н. Свойство стабильности в игровой задаче о сближении при наличии фазовых ограничений // Изв. РАН. ТиСУ. 2021. № 4. С. 27–45.
  11. Бортаковский А.С. Оптимальные по быстродействию траектории плоского движения с неограниченной кривизной // Изв. РАН. ТиСУ. 2022. № 4. С. 49–59.
  12. Bakolas E., Tsiotras P. Optimal Synthesis of the Asymmetric Sinistral / Dextral Markov-Dubins Problem // J. Optim. Theory Appl. 2011. V. 150. № 2. P. 233–250.
  13. Миеле А. Механика полета. М.: Наука, 1965.
  14. Pecsvaradi T. Optimal Horizontal Guidance Law for Aircraft in the Terminal Area // IEEE Trans. on Automatic Control. 1972. V. 17. № 6. P. 763–772.
  15. Пацко В.С., Пятко С.Г., Федотов А.А. Трехмерное множество достижимости нелинейной управляемой системы // Изв. РАН. ТиСУ. 2003. № 3. С. 8–16.
  16. Пацко В.С., Федотов А.А. Аналитическое описание множества достижимости для машины Дубинса // Тр. Ин-та математики и механики УрО РАН. 2020. Т. 26. № 1. С. 182–197.
  17. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Физматгиз, 1961.
  18. Ли Э.Б., Маркус Л. Основы теории оптимального управления. М.: Наука, 1972.
  19. Tolstonogov A.A. Differential Inclusions in a Banach Space. Dordrecht: Kluwer Acad. Publ. 2000 (Mathematics and Its Applications. V. 524).
  20. Пацко В.С., Федотов А.А. Множество достижимости в момент для машины Дубинса в случае одностороннего поворота // Тр. Ин-та математики и механики УрО РАН. 2018. Т. 24. № 1. С. 143–155.
  21. Пацко В.С., Федотов А.А. Структура множества достижимости для машины Дубинса со строго односторонним поворотом // Тр. Ин-та математики и механики УрО РАН. 2019. Т. 25. № 3. С. 171–187.

© В.С. Пацко, А.А. Федотов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».