Three-Dimensional Reachability Set For a Dubins Car: Reduction of the General Case of Rotation Constraints to the Canonical Case

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In mathematical control theory, a Dubins car is a nonlinear motion model described by differential relations, in which the scalar control determines the instantaneous angular rate of rotation. The value of the linear velocity is assumed to be constant. The phase vector of the system is three-dimensional. It includes two coordinates of the geometric position and one coordinate having the meaning of the angle of inclination of the velocity vector. This model is popular and is used in various control tasks related to the motion of an aircraft in a horizontal plane, with a simplified description of the motion of a car, small surface and underwater vehicles, etc. Scalar control can be constrained either by a symmetric constraint (when the minimum rotation radii to the left and right are the same) or asymmetric constraint (when rotation is possible in both directions, but the minimum rotation radii are not the same). Usually, problems with symmetric and asymmetric constraints are considered separately. It is shown that when constructing the reachability set at the moment, the case of an asymmetric constraint can be reduced to a symmetric case.

Sobre autores

V. Patsko

Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia

Email: patsko@imm.uran.ru
Россия, Екатеринбург

A. Fedotov

Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia

Autor responsável pela correspondência
Email: patsko@imm.uran.ru
Россия, Екатеринбург

Bibliografia

  1. Dubins L.E. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents // American J. Math. 1957. V. 79. № 3. P. 497–516.
  2. Марков А.А. Несколько примеров решения особого рода задач о наибольших и наименьших величинах // Сообщ. Харьков. матем. общ. Вторая сер. 1889. Т. 1. Вып. 2. С. 250–276.
  3. Айзекс Р. Дифференциальные игры. М.: Мир, 1967.
  4. Patsko V.S., Fedotov A.A. Three-dimensional Reachable Set for the Dubins Car: Foundation of Analytical Description // Commun. Optim. Theory. 2022. V. 2022. Article ID 23. P. 1–42.
  5. Laumond J.-P. (ed.) Robot Motion Planning and Control. Berlin; Heidelberg: Springer-Verlag, 1998 (Lecture Notes in Control and Information Sciences. V. 229).
  6. LaValle S.M. Planning Algorithms. Cambridge: Cambridge University Press, 2006.
  7. Бузиков М.Э., Галяев А.А. Перехват подвижной цели машиной Дубинса за кратчайшее время // АиТ. 2021. № 5. С. 3–19.
  8. Ардентов А.А., Локуциевский Л.В., Сачков Ю.Л. Решение серии задач оптимального управления с 2-мерным управлением на основе выпуклой тригонометрии // Доклады Российской академии наук. Математика, информатика, процессы управления. 2020. Т. 494. № 1. С. 86–92.
  9. Хабаров С.П., Шилкина М.Л. Геометрический подход к решению задачи для машин Дубинса при формировании программных траекторий движения // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21. № 5. С. 653–663.
  10. Зимовец А.А., Матвийчук А.Р., Ушаков А.В., Ушаков В.Н. Свойство стабильности в игровой задаче о сближении при наличии фазовых ограничений // Изв. РАН. ТиСУ. 2021. № 4. С. 27–45.
  11. Бортаковский А.С. Оптимальные по быстродействию траектории плоского движения с неограниченной кривизной // Изв. РАН. ТиСУ. 2022. № 4. С. 49–59.
  12. Bakolas E., Tsiotras P. Optimal Synthesis of the Asymmetric Sinistral / Dextral Markov-Dubins Problem // J. Optim. Theory Appl. 2011. V. 150. № 2. P. 233–250.
  13. Миеле А. Механика полета. М.: Наука, 1965.
  14. Pecsvaradi T. Optimal Horizontal Guidance Law for Aircraft in the Terminal Area // IEEE Trans. on Automatic Control. 1972. V. 17. № 6. P. 763–772.
  15. Пацко В.С., Пятко С.Г., Федотов А.А. Трехмерное множество достижимости нелинейной управляемой системы // Изв. РАН. ТиСУ. 2003. № 3. С. 8–16.
  16. Пацко В.С., Федотов А.А. Аналитическое описание множества достижимости для машины Дубинса // Тр. Ин-та математики и механики УрО РАН. 2020. Т. 26. № 1. С. 182–197.
  17. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Физматгиз, 1961.
  18. Ли Э.Б., Маркус Л. Основы теории оптимального управления. М.: Наука, 1972.
  19. Tolstonogov A.A. Differential Inclusions in a Banach Space. Dordrecht: Kluwer Acad. Publ. 2000 (Mathematics and Its Applications. V. 524).
  20. Пацко В.С., Федотов А.А. Множество достижимости в момент для машины Дубинса в случае одностороннего поворота // Тр. Ин-та математики и механики УрО РАН. 2018. Т. 24. № 1. С. 143–155.
  21. Пацко В.С., Федотов А.А. Структура множества достижимости для машины Дубинса со строго односторонним поворотом // Тр. Ин-та математики и механики УрО РАН. 2019. Т. 25. № 3. С. 171–187.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (14KB)
3.

Baixar (69KB)
4.

Baixar (40KB)
5.

Baixar (64KB)
6.

Baixar (37KB)
7.

Baixar (42KB)
8.

Baixar (28KB)
9.

Baixar (99KB)
10.

Baixar (264KB)

Declaração de direitos autorais © В.С. Пацко, А.А. Федотов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».