Laboratory Modeling of Archaeomagnetic Recording in the Thellier-Coe Experiments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the laboratory magnetic field magnitude in the Thellier-Coe method on the results of determining the “archeointensity” of the magnetic field was studied. The experiments were conducted on the same samples of artificial “Neolithic” ceramics and medieval bricks from Veliko-Tаrnovo town in laboratory magnetic fields of 20, 35, 50, 75 and 100 μT. The obtained results show that for the studied samples the magnitude of magnetic field induction determined in the Thellier-Coe experiments (“archeointensity”) depends on the magnitude of the laboratory magnetic field induction in the Thellier-Coe method (increases approximately according to a quasi-logarithmic law). It is assumed that the reason for the obtained dependence is the nonlinear dependence of thermoremanent magnetization on the magnetic field magnitude (in the range of 20-100 μT) in which it was created.

About the authors

O. V. Pilipenko

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: pilipenko@ifz.ru
Moscow, Russia

G. P. Markov

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: gpmarkov@yandex.ru
Moscow, Russia

Yu. B. Tsetlin

Institute of Archaeology, Russian Academy of Sciences

Email: yu.tsetlin@mail.ru
Moscow, Russia

G. V. Zhidkov

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: grigor@borok.yar.ru
Borok, Yaroslavl Region, Russia

N. A. Afinogenova

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: aphina312@mail.ru
Borok, Yaroslavl Region, Russia

References

  1. Еселовский Р.В., Дубиня Н.В., Пономарев А.В. и др. Центр коллективного пользования Института физики Земли им. О.Ю. Шмидта РАН "Петрофизика, геомеханика и палеомагнетизм" // Геодинамика и тектонофизика. 2022. Т. 13. № 2. 0579. https://doi.org/10.5800/GT-2022-13-2-0579
  2. Цетлин Ю.Б. Некоторые особенности технологии гончарного производства в бассейне Верхней Волги в эпоху неолита // Советская археология. 1980. № 4. С. 9–15.
  3. Цетлин Ю.Б. Периодизация неолита Верхнего Поволжья. Методические проблемы. М.: ИА АН СССР. 1991. 195 с.
  4. Цетлин Ю.Б. История изучения приемов обжига глиняных сосудов // Вестник "История керамики". М.: ИА РАН. 2022. Вып. 4. С. 52–83.
  5. Ben-Yosef E., Tauxe L., Levy T. E., Shaar R., Ron H., Najjar M. Geomagnetic intensity spike recorded in high resolution slag deposit in Southern Jordan // Earth Planet. Sci. Lett. 2009. V. 287. № 3–4. P. 529–539.
  6. Coe R.S. The determination of paleointensities of the Earth magnetic field with special emphasize of mechanisms which could cause nonideal behavior in Thelliers′ method // J. Geomagn. Geoelectr. 1967. V. 19. P. 157–179.
  7. Coe R.S., Gromme S., Mankinen E.A. Geomagnetic paleointensity from radiocarbon-dated flows on Hawaii and the question of the Pacific nondipole low // J. Geophys. Res. 1978. V. 83. P. 1740–1756.
  8. Kissel C., Laj C. Improvements in procedure and paleointensity selection criteria (PICRIT-03) for Thellier and Thellier determintions: application to Hawaiian basaltic long cores // Phys. Earth Planet. Inter. 2004. V. 147. P. 155–169.
  9. Korte M., Constable C., Donadini F., Holme R. Reconstructing the Holocene geomagnetic field // Earth Planet. Sci. Lett. 2011. V. 312. P. 497–505.
  10. Kostadinova-Avramova M. Advantages and disadvantages of bricks as a material for archaeomagnetic study // Интердисциплинарни изследвания. 2019. V. XXVI. P. 107–120.
  11. Le Goff M., Gallet Y. A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations // Earth and Planetary Science Letters. 2004. V. 229. P. 31–43.
  12. Nagata T., Arai Y., Momose K. Secular variation of the geomagnetic total force during the last 5000 years // J. Geophys. Res. 1963. V. 68. P. 5277–5281.
  13. Prévot M., Mankinen E.A., Coe R.S., Gromme S.C. The Steens Mountain (Oregon) geomagnetic polarity transition 2. Field intensity variations and discussion of reversal models // J. Geophys. Res. 1985. V. 90. № B12. P. 10417–10448.
  14. Rietveld H.M. A profile refinement method for nuclear and magnetic structures // J. Appl. Crystallogr. 1969. V. 2. P. 65–71.
  15. Rivera P., Pavón-Carrasco F. J., Osete M. L. Modeling geomagnetic spikes: the Levantine Iron Age anomaly // Earth, Planets and Space. 2023. V. 75. 16 p.
  16. Selkin P.A., Tauxe L. Long-term variations in palaeointensity // Philos. Trans. R. Soc. London, Ser A. 2000. V. 358. P. 1065–1088.
  17. Tanaka H., Kono M. Analysis of the Thelliers′ Method of Paleointensity Determination 2: Applicability to high and low magnetic fields // J. Geomag. Geoelectr. 1984. V. 36. P. 285–297.
  18. Thellier E., Thellier O. Sur l′intensité du champ magnéttique terrestre dans le passé historique et géologique // Ann. Geophys. 1959. V. 15. P. 285–378.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).