Evaluation of the nephroprotective strategy effectiveness in the late stages of CKD

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

BACKGROUND: The effectiveness of conventional nephroprotection is reduced at the late stages of chronic kidney disease; the search for effective algorithms is hampered by accelerating decline in glomerular filtration rate. There are no generally accepted ways to evaluate the effectiveness of conventional nephroprotection.

AIM: To build a model for predicting the glomerular filtration decline rate to assess the effectiveness of the intensive follow-up.

MATERIALS AND METHODS: A representative group of regular follow-up (n = 540) was selected from the city database (n = 7696) to built-up the model that predicts glomerular filtration annual decline rate. This model is used to evaluate the effectiveness of intensive monitoring (n = 100) by the difference between predicted and actual glomerular filtration rate decline. The corresponding subgroup (n = 200) was used for direct comparison of hard and surrogate outcomes.

RESULTS: A year before dialysis is required, the glomerular filtration rate decline in intensive group was 5.98 ± 1.69 vs. the predicted 9.06 ± 0.59 ml/min/1.73 m2/year. The assessment of the intervention effectiveness has been used as a dependent variable in regression and categorical analysis. Significant components of the nephroprotection including phosphatemia decrease (0.25 mmol/l), hemoglobin increase (1 g/dl), effective administration of renin-angiotensin-aldosterone system blockers (proteinuria reduce by 0.1 g/l), systolic blood pressure decrease (5 mm Hg), calcemia deviations from the target decrease (0.1 mmol/l), acidosis correction (2 mmol/l), inflammation reduction and albumin increase (1.5 g/l) which were associated with the smaller glomerular filtration rate decrease rate by 15%. The intensive therapy group had the dialysis risk was 2.2 times smaller, and the death risk was 4 times smaller. The planned dialysis was ensured in the intensive therapy group; 67% chose peritoneal dialysis.

CONCLUSIONS: The prediction of glomerular filtration decline rate calculated by nonlinear model in comparison with the actual one can evaluate the nephroprotection effectiveness; it differs significantly from the conventional ones at the late stages of chronic kidney disease.

作者简介

Daria S. Sadovskaya

North-Western state medical university named after I.I.Mechnikov

Email: dssadovskaya@gmail.com
ORCID iD: 0000-0002-1903-2630
SPIN 代码: 1304-5441

Postgraduate student of the Department of Internal Medicine, Clinical Pharmacology and Nephrology

俄罗斯联邦, 191015, 41, Kirochnaya str., Saint Petersburg, Russia

Konstantin A. Vishnevsky

North-Western state medical university named after I.I.Mechnikov; City Mariinsky Hospital

Email: vishnevskii2022@mail.ru
ORCID iD: 0000-0001-6945-4711
SPIN 代码: 4417-0736
Scopus 作者 ID: 56841508800

PhD, Assistant of the Department of Internal Diseases, Clinical Pharmacology and Nephrology; head of dialysis unit

俄罗斯联邦, 41 Kirochnaya str., Saint Petersburg, 191015, Russia; 56 Liteyny Ave., Saint Petersburg, Russia, 191014

Irina Konakova

City Mariinsky hospital

Email: inkonakova@yandex.ru
ORCID iD: 0000-0003-4564-5809
SPIN 代码: 8560-9861

Deputy Chief Physician

俄罗斯联邦, 191014, 56 Liteyny Ave., Saint Petersburg, Russia

Olga R. Golubeva

City Mariinsky hospital; Saint Petersburg State Pediatric Medical University

Email: 12golubevaolga@gmail.com
ORCID iD: 0000-0003-2078-7747
SPIN 代码: 4866-1590

nephrologist of the Dialysis unit; assistant of the Department of Propaedeutics of Internal Diseases

俄罗斯联邦, 191014, 56 Liteyny Ave., Saint Petersburg, Russia; 194100, St. Petersburg, Litovskaya str., 2

Natalya V. Bakulina

North-West State Medical University named after I.I. Mechnikov

编辑信件的主要联系方式.
Email: nv_bakulina@mail.ru
ORCID iD: 0000-0003-4075-4096
SPIN 代码: 9503-8950
Scopus 作者 ID: 7201739080
Researcher ID: N-7299-2014
http://www.researcherid.com/rid/N-7299-2014

MD, Dr. Sci. (Med.); Head of the Department of Internal Diseases, Clinical Pharmacology and Nephrology, Vice-Rector for Science and Innovation

俄罗斯联邦, 191015, 41 Kirochnaya St., Saint Petersburg, Russia

参考

  1. Clinical recommendations. Chronic kidney disease (CKD). Nephrology (Saint-Petersburg). 2021;25(5):10–82. (In Russ.) doi: 10.36485/1561-6274-2021-25-5-10-82
  2. Weldegiorgis M, de Zeeuw D, Dwyer JP, et al. Is chronic dialysis the right hard renal end point to evaluate renoprotective drug effects? Clin J Am Soc Nephrol. 2017;12(10):1595–1600. doi: 10.2215/CJN.09590916
  3. Zhang F, Bai Y, Zhao X, et al. Therapeutic effects of exercise interventions for patients with chronic kidney disease: an umbrella review of systematic reviews and meta-analyses. BMJ Open. 2022;12(9):e054887. doi: 10.1136/bmjopen-2021-054887
  4. Ikizler TA, Burrowes JD, Byham-Gray LD, et al. KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Nephrologу and Dialуsis. 2022;24(2):143–278. (In Russ). doi: 10.28996/2618-9801-2022-2-143-278
  5. McMahon EJ, Campbell KL, Bauer JD, et al. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev. 2021;6(6):CD010070. doi: 10.1002/14651858.CD010070.pub3
  6. Naber T, Purohit S. Chronic kidney disease: role of diet for a reduction in the severity of the disease. Nutrients. 2021;13(9):3277. doi: 10.3390/nu13093277
  7. Zemchenkov AY, Gerasimchuk RP, Novokshonv KY, et al. Comparative analysis of the parathyroidectomy and local vitamin D receptor activator injections into parathyroid glands. Nephrology (Saint-Petersburg). 2016;20(4):80–92. (In Russ.)
  8. Tan J, Zhou H, Deng J, et al. Effectiveness of microecological preparations for improving renal function and metabolic profiles in patients with chronic kidney disease. Front Nutr. 2022;9:850014. doi: 10.3389/fnut.2022.850014
  9. Fazelian S, Moradi F, Agah S, et al. Effect of omega-3 fatty acids supplementation on cardio-metabolic and oxidative stress parameters in patients with chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2021;22(1):160. doi: 10.1186/s12882-021-02351-9
  10. Fotheringham AK, Gallo LA, Borg DJ, Forbes JM. Advanced glycation end products (AGEs) and chronic kidney disease: does the modern diet age the kidney? Nutrients. 2022;14(13):2675. doi: 10.3390/nu14132675
  11. Pyatchenkov MO, Markov AG, Rumyantsev AS. Structural and functional intestinal barrier abnormalities and chronic kidney disease. Literature review. Part I. Nephrology (Saint-Petersburg). 2022;26(1):10–26. (In Russ.) doi: 10.36485/1561-6274-2022-26-1-10-26
  12. Lavrishcheva IV, Rumyantsev AS, Zakharov MV, et al. Sarcopenia is an actual problem in chronic kidney disease of the 5D stage. Nephrology (Saint Petersburg). 2020;24(1):60–66. (In Russ.) doi: 10.36485/1561-6274-2020-24-1-60-66
  13. Xie X, Liu Y, Perkovic V, et al. Renin-angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: a bayesian network meta-analysis of randomized clinical trials. Am J Kidney Dis. 2016;67(5):728–741. doi: 10.1053/j.ajkd.2015.10.011
  14. Fu EL, Clase CM, Evans M, et al. Comparative Effectiveness of renin-angiotensin system inhibitors and calcium channel blockers in individuals with advanced CKD: a nationwide observational cohort study. Am J Kidney Dis. 2021;77(5):719–729.e1. doi: 10.1053/j.ajkd.2020.10.006
  15. Fu EL, Evans M, Clase CM, et al. Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: a nationwide study. J Am Soc Nephrol. 2021;32(2):424–435. doi: 10.1681/ASN.2020050682
  16. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021;99(3S):S1–S87. doi: 10.1016/j.kint.2020.11.003
  17. Dasgupta I, Zoccali C. Is the KDIGO systolic blood pressure target <120 mm Hg for chronic kidney disease appropriate in routine clinical practice? Hypertension. 2022;79(1):4–11. doi: 10.1161/HYPERTENSIONAHA.121.18434
  18. Taylor KS, Mclellan J, Verbakel JY, et al. Effects of antihypertensives, lipid-modifying drugs, glycaemic control drugs and sodium bicarbonate on the progression of stages 3 and 4 chronic kidney disease in adults: a systematic review and meta-analysis. BMJ Open. 2019;9(9):e030596. doi: 10.1136/bmjopen-2019-030596
  19. Zhang Y, He D, Zhang W, et al. ACE Inhibitor benefit to kidney and cardiovascular outcomes for patients with non-dialysis chronic kidney disease stages 3-5: a network meta-analysis of randomised clinical trials. Drugs. 2020;80(8):797–811. doi: 10.1007/s40265-020-01290-3
  20. Yan MT, Chao CT, Lin SH. Chronic kidney disease: strategies to retard progression. Int J Mol Sci. 2021;22(18):10084. doi: 10.3390/ijms221810084
  21. Goulooze SC, Heerspink HJL, van Noort M, et al. Dose-exposure-response analysis of the nonsteroidal mineralocorticoid receptor antagonist finerenone on UACR and eGFR: an analysis from FIDELIO-DKD. Clin Pharmacokinet. 2022;61(7):1013–1025. doi: 10.1007/s40262-022-01124-3
  22. McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol. 2021;6(2):148–158. doi: 10.1001/jamacardio.2020.4511
  23. EMPA-KIDNEY Collaborative Group. Design, recruitment, and baseline characteristics of the EMPA-KIDNEY trial. Nephrol Dial Transplant. 2022;37(7):1317–1329. doi: 10.1093/ndt/gfac040
  24. Yamada T, Wakabayashi M, Bhalla A, et al. Cardiovascular and renal outcomes with SGLT-2 inhibitors versus GLP-1 receptor agonists in patients with type 2 diabetes mellitus and chronic kidney disease: a systematic review and network meta-analysis. Cardiovasc Diabetol. 2021;20(1):14. doi: 10.1186/s12933-020-01197-z
  25. Barbosa C, Lang H, Melk A, Schmidt BMW. Renal events in patients receiving neprilysin inhibitors: a systematic review and meta-analysis. Nephrol Dial Transplant. 2022;37(12):2418–2428. doi: 10.1093/ndt/gfac001
  26. Zhang Y, Jiang L, Wang J, et al. Network meta-analysis on the effects of finerenone versus SGLT2 inhibitors and GLP-1 receptor agonists on cardiovascular and renal outcomes in patients with type 2 diabetes mellitus and chronic kidney disease. Cardiovasc Diabetol. 2022;21(1):232. doi: 10.1186/s12933-022-01676-5
  27. Lameire NH, Levin A, Kellum JA, et al. Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Nephrology and dialysis. 2023;25(1):11–25. doi: 10.28996/2618-9801-2023-1-11-25
  28. Göcze I, Jauch D, Götz M, et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study. Ann Surg. 2018;267:1013–1020. doi: 10.1097/SLA.0000000000002485
  29. Bobkova IN, Bulanov NM, Zakharova EV, et al. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Transl. into Russ., ed. by E.V. Zakharova. Nephrology and Dialysis. 2022;24(4):577–874. (In Russ.) doi: 10.28996/2618-9801-2022-4-577-874
  30. United States Renal Data System. 2021 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. Chapter 11. International Comparisons. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2021. https://adr.usrds.org/2021
  31. Andrusev AM, Tomilina NA, Peregudova NG, Shinkarev MB. Kidney replacement therapy for end stage kidney disease in Russian Federation, 2015-2019. Russian national kidney replacement therapy registry report of Russian public organization of nephrologists “Russian Dialysis Society”. Nephrology and Dialysis. 2021;23(3):255–329. (In Russ.) doi: 10.28996/2618-9801-2021-3-255-329
  32. Zemchenkov AYu, Konakova IN. The chronic kidney disease progression rates according to St.-Petersburg CKD register. Nephrology and Dialysis. 2015;17(1):34–51. (In Russ.)
  33. Heyman SN, Raz I, Dwyer JP, et al. Diabetic proteinuria revisited: updated physiologic perspectives. Cells. 2022;11(18):2917. doi: 10.3390/cells11182917
  34. Uribarri J. Chronic kidney disease and kidney stones. Curr Opin Nephrol Hypertens. 2020;29(2):237–242. doi: 10.1097/MNH.0000000000000582
  35. Horie S, Muto S, Kawano H, et al. Preservation of kidney function irrelevant of total kidney volume growth rate with tolvaptan treatment in patients with autosomal dominant polycystic kidney disease. Clin Exp Nephrol. 2021;25(5):467–478. doi: 10.1007/s10157-020-02009-0
  36. Navaneethan SD, Shao J, Buysse J, Bushinsky DA. Effects of treatment of metabolic acidosis in ckd: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2019;14(7):1011–1020. doi: 10.2215/CJN.13091118
  37. Chatterjee PK. Pleiotropic renal actions of erythropoietin. Lancet. 2005;365(9474):1890–1892. doi: 10.1016/S0140-6736(05)66622-6
  38. Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361(21):2019–2032. doi: 10.1056/NEJMoa0907845
  39. Fliser D, Dellanna F, Koch M, et al. Early low-dose erythropoiesis-stimulating agent therapy and progression of moderate chronic kidney disease: a randomized, placebo-controlled trial. Nephrol Dial Transplant. 2017;32(2):279–287. doi: 10.1093/ndt/gfw418
  40. Hayashi T, Maruyama S, Nangaku M, et al. Darbepoetin alfa in patients with advanced CKD without diabetes: randomized, controlled trial. Clin J Am Soc Nephrol. 2020;15(5):608–615. doi: 10.2215/CJN.08900719
  41. Tsuruya K, Hayashi T, Yamamoto H, et al. Renal prognoses by different target hemoglobin levels achieved by epoetin beta pegol dosing to chronic kidney disease patients with hyporesponsive anemia to erythropoiesis-stimulating agent: a multicenter open-label randomized controlled study. Clin Exp Nephrol. 2021;25(5):456–466. doi: 10.1007/s10157-020-02005-4
  42. Miao M, Wu M, Li Y, et al. Clinical potential of hypoxia inducible factors prolyl hydroxylase inhibitors in treating nonanemic diseases. Front Pharmacol. 2022;13:837249. doi: 10.3389/fphar.2022.837249
  43. Tsukamoto S, Okami N, Yamada T, et al. Prevention of kidney function decline using uric acid-lowering therapy in chronic kidney disease patients: a systematic review and network meta-analysis. Clin Rheumatol. 2022;41(3):911–919. doi: 10.1007/s10067-021-05956-5
  44. Inker LA, Heerspink HJL, Tighiouart H, et al. GFR slope as a surrogate end point for kidney disease progression in clinical trials: a meta-analysis of treatment effects of randomized controlled trials. J Am Soc Nephrol. 2019;30(9):1735–1745. doi: 10.1681/ASN.2019010007
  45. Heerspink HJL, Greene T, Tighiouart H, et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019;7(2):128–139. doi: 10.1016/S2213-8587(18)30314-0
  46. Coresh J, Heerspink HJL, Sang Y, et al. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol. 2019;7(2):115–127. doi: 10.1016/S2213-8587(18)30313-9
  47. Sadovskaya DS, Vishnevskii KA, Konakova IN, Bakulina NV. The rate of CKD progression in advanced stages and the dynamics of the uremic syndrome parameters. Nephrology (Saint Petersburg). 2022;26(4):50–65. (In Russ.) doi: 10.36485/1561-6274-2022-26-4-50-65
  48. Janmaat CJ, van Diepen M, van Hagen CC, et al. Decline of kidney function during the pre-dialysis period in chronic kidney disease patients: a systematic review and meta-analysis. Clin Epidemiol. 2018;10:613–622. doi: 10.2147/CLEP.S153367
  49. Hoshino J, Tsunoda R, Nagai K, et al. Comparison of annual eGFR decline among primary kidney diseases in patients with CKD G3b-5: results from a REACH-J CKD cohort study. Clin Exp Nephrol. 2021;25(8):902–910. doi: 10.1007/s10157-021-02059-y
  50. Zemchenkov AYu, Vishnevskii KA, Sabodash AB, et al. The timing and other dialysis start features associated with survival: St-Petersburg renal replacement therapy register. Nephrology and Dialysis. 2017;19(2):255–270. (In Russ.) doi: 10.28996/1680-4422-2017-2-255-270
  51. Bakulin IG, Zemchenkov AYu. Progression of chronic kidney disease and modern concepts of nephroprotection. Opinion Leader. 2020;(9(38)):82–91. (In Russ.)
  52. Zemchenkov AY, Rumyantsev AS, Smirnov AV. The efficacy evaluation of the nephroprotective therapy: minireview and Saint Petersburg registry data. Nephrology (Saint-Petersburg). 2018;22(1):58–68. (In Russ.) doi: 10.24884/1561-6274-2018-22-1-58-68

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The number of individual from/to certain levels of glomerular filtration rate (GFR) used to create a model for predicting the progression rate. A, Б, В, Г — groups of the patients followed up to GFR ranges of 10–14, 15–19, 20–24, 25–29 ml/min/1.72 m2, respectively; α, β, γ — followed from the GFR ranges of 44–40, 39–35, 34–30 ml/min/1.72 m2, respectively

下载 (234KB)
3. Fig. 2. Function for predicting estimated glomerular filtration rate decline with the current estimated glomerular filtration rate in patients with “standard” follow-up (n = 540). GFR — glomerular filtration rate; N — number of patients

下载 (118KB)
4. Fig. 3. A model of multiple regression analysis with a dependent variable “the effect of intensive monitoring on reducing estimated glomerular filtration rate decline”

下载 (281KB)

版权所有 © Eco-Vector, 2023



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».