Reducing Implant-Associated Complications in Scoliosis Surgery by Using O-Arm Navigation and Additive Technologies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background. Posterior spinal fusion with multisegmental fixation with pedicle screws is the method of choice in the treatment of patients with severe scoliosis. Malposition of pedicle screws, as a cause of implant-associated complications when using the free-hand technique of their implantation, occurs with a frequency of 1.5 to 50.0%. High risks of implant-associated complications require the widespread implementation of technologies for their prevention, including O-arm navigation and additive technologies. Aims — to compare the accuracy and safety of surgical correction of scoliosis using the free-hand technique, O-arm navigation and additive technologies to reduce the risk of implant-associated complications. Methods. A total of 72 patients operated on for scoliotic deformity were included in the study. Group I included 25 patients (447 screws) operated on using the free-hand technique of transpedicular screw implantation, group II included 25 patients (528 screws) operated on using O-arm navigation, and group III included 22 patients (430 screws) operated on using additive technologies based on 3D printing. A comparative analysis of the frequency and distribution of malpositions was carried out in the groups, as well as a search for relationships between various radiographic parameters. Results. In the free-hand group, the average angle of deformation before surgery was 78.48 ± 18.28, the total frequency of malpositions was 16.6%, including: grade 1 — 2.01%, grade 2 — 6.94%, grade 3 — 7.6%. In the O-arm group, the angle of deformation was 90.84 ± 30.16, a total of malpositions was 4.92%, including: grade 1 — 1.52%, grade 2 — 2.84%, grade 3 — 0.57%. In the 3D printing group, the average angle was 95.36 ± 20.93, a total of malpositions was 6.28%, including: grade 1 — 3.72%, grade 2 — 2.33%, grade 3 — 0.23%. When assessing the relationship between the rotation of the apical vertebra and the Cobb angle of deformation on the frequency of malpositions in the free-hand group, a high degree of direct relationship was found (p < 0.05). No correlation was found between the frequency of malpositions and rotations of the apical vertebra and the Cobb angle of deformation in the O-arm group. In the 3D group, a moderate correlation was observed (p < 0.05). In the free-hand group, 1 neurological complication was noted, in the O-arm and 3D groups, no complications were noted. Conclusions. The use of free-hand — the technique of installing pedicle screws in surgical correction of spinal deformities is relatively safe. However, an increase in the severity of spinal deformity is associated with a high risk of implant-associated complications in severe spinal deformities. The use of O-arm navigation and additive technologies significantly reduces the risk of implant-associated complications, which increases the effectiveness and safety of surgical correction of severe forms of scoliosis.

About the authors

Ivan P. Pimbursky

National Medical Research Center for Children’s Health

Email: bdfyltvbljd@yandex.ru
ORCID iD: 0009-0002-5274-3941
SPIN-code: 6085-7940

MD

Russian Federation, 2 Lomonosovsky Prospekt, 119296, Moscow

Ivan E. Domrachev

National Medical Research Center of Traumatology and Orthopedics named after N.N. Priorov

Email: VaniaD97@mail.ru
ORCID iD: 0009-0005-9014-3068
SPIN-code: 1367-3096

MD

Russian Federation, Moscow

Oleg B. Chelpachenko

National Medical Research Center for Children’s Health; Research Institute of Emergency Children’s Surgery and Traumatology

Email: chelpachenko81@mail.ru
ORCID iD: 0000-0002-0333-3105
SPIN-code: 7738-5108

MD, PhD

Russian Federation, 2 Lomonosovsky Prospekt, 119296, Moscow; Moscow

Sergey V. Kolesov

National Medical Research Center of Traumatology and Orthopedics named after N.N. Priorov

Email: dr-kolesov@yandex.ru
ORCID iD: 0000-0002-4252-1854
SPIN-code: 1989-6994

MD, PhD

Russian Federation, Moscow

Konstantin V. Zherdev

National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: drzherdev@mail.ru
ORCID iD: 0000-0003-3698-6011
SPIN-code: 8712-1738

MD, PhD, Assistant Professor

Russian Federation, 2 Lomonosovsky Prospekt, 119296, Moscow; Moscow

Sergey P. Yatsyk

Russian Medical Academy of Continuous Professional Education

Email: macadamia@yandex.ru
ORCID iD: 0000-0001-6966-1040
SPIN-code: 4890-8742

MD, PhD, Professor, Corresponding Member of the RAS

Russian Federation, Moscow

Andrey S. Butenko

National Medical Research Center for Children’s Health

Email: butenko.as@nczd.ru
ORCID iD: 0000-0002-7542-8218
SPIN-code: 9703-4935

MD

Russian Federation, 2 Lomonosovsky Prospekt, 119296, Moscow

Arcady I. Kazmin

National Medical Research Center of Traumatology and Orthopedics named after N.N. Priorov

Author for correspondence.
Email: kazmin.cito@mail.ru
ORCID iD: 0000-0003-2330-0172
SPIN-code: 4944-4173

MD, PhD

Russian Federation, Moscow

References

  1. Lenke LG, Kuklo TR, Ondra S, et al. Rationale behind the current state-of-the-art treatment of scoliosis (in the pedicle screw era). Spine (Phila Pa 1976). 2008;33(10):1051–1054. doi: https://doi.org/10.1097/BRS.0b013e31816f2865
  2. Swany L, Larson AN, Garg S, et al. 0.4% incidence of return to OR due to screw malposition in a large prospective adolescent idiopathic scoliosis database. Spine Deform. 2022;10(2):361–367. doi: https://doi.org/10.1007/s43390-021-00434-z
  3. Levy BJ, Schulz JF, Fornari ED, et al. Complications associated with surgical repair of syndromic scoliosis. Scoliosis. 2015;10:14. doi: https://doi.org/10.1186/s13013-015-0035-x
  4. Weissmann KA, Lafage V, Pitaque CB, et al. Neuromuscular Scoliosis: Comorbidities and Complications. Asian Spine J. 2021;15(6):778–790. doi: https://doi.org/10.31616/asj.2020.0263
  5. Ansorge A, Sarwahi V, Bazin L, et al. Accuracy and Safety of Pedicle Screw Placement for Treating Adolescent Idiopathic Scoliosis: A Narrative Review Comparing Available Techniques. Diagnostics (Basel). 2023;13(14):2402. doi: https://doi.org/10.3390/diagnostics13142402
  6. Sakhrekar R, Shkumat N, Ertl-Wagner B, et al. Pedicle screw accuracy placed with assistance of machine vision technology in patients with neuromuscular scoliosis. Spine Deform. 2024;12(3):739–746. doi: https://doi.org/10.1007/s43390-024-00830-1
  7. Akazawa T, Torii Y, Ueno J, et al. Accuracy of computer-assisted pedicle screw placement for adolescent idiopathic scoliosis: a comparison between robotics and navigation. Eur Spine J. 2023;32(2):651–658. doi: https://doi.org/10.1007/s00586-022-07502-6
  8. Diab M, Smith AR, Kuklo TR; Spinal Deformity Study Group. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2007;32(24):2759–2763. doi: https://doi.org/10.1097/BRS.0b013e31815a5970
  9. Di Silvestre M, Parisini P, Lolli F, et al. Complications of thoracic pedicle screws in scoliosis treatment. Spine (Phila Pa 1976). 2007;32(15):1655–1661. doi: https://doi.org/10.1097/BRS.0b013e318074d604
  10. Kakkos SK, Shepard AD. Delayed presentation of aortic injury by pedicle screws: report of two cases and review of the literature. J Vasc Surg. 2008;47(5):1074–1082. doi: https://doi.org/10.1016/j.jvs.2007.11.005
  11. Sandhu HK, Charlton-Ouw KM, Azizzadeh A, et al. Spinal screw penetration of the aorta. J Vasc Surg. 2013;57(6):1668–1670. doi: https://doi.org/10.1016/j.jvs.2012.10.087
  12. Luo M, Wang W, Yang N, et al. Does Three-dimensional Printing Plus Pedicle Guider Technology in Severe Congenital Scoliosis Facilitate Accurate and Efficient Pedicle Screw Placement? Clin Orthop Relat Res. 2019;477(8):1904–1912. doi: https://doi.org/10.1097/CORR.0000000000000739
  13. Rao G, Brodke DS, Rondina M, et al. Comparison of computerized tomography and direct visualization in thoracic pedicle screw placement. J Neurosurg. 2002;97(2 Suppl):223–226. doi: https://doi.org/10.3171/spi.2002.97.2.0223
  14. Feng W, Wang W, Chen S, et al. O-arm navigation versus C-arm guidance for pedicle screw placement in spine surgery: a systematic review and meta-analysis. Int Orthop. 2020;44(5):919–926. doi: https://doi.org/10.1007/s00264-019-04470-3
  15. Baky FJ, Milbrandt T, Echternacht S, et al. Intraoperative Computed Tomography-Guided Navigation for Pediatric Spine Patients Reduced Return to Operating Room for Screw Malposition Compared with Freehand/Fluoroscopic Techniques. Spine Deform. 2019;7(4):577–581. doi: https://doi.org/10.1016/j.jspd.2018.11.012
  16. Jin M, Liu Z, Liu X, et al. Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique. Eur Spine J. 2016;25(6):1729–1737. doi: https://doi.org/10.1007/s00586-015-4012-0
  17. Van de Kelft E, Costa F, Van der Planken D, et al. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976). 2012;37(25):E1580–E1587. doi: https://doi.org/10.1097/BRS.0b013e318271b1fa
  18. Katiyar P, Boddapati V, Coury J, et al. Three-Dimensional Printing Applications in Pediatric Spinal Surgery: A Systematic Review. Global Spine J. 2024;14(2):718–730. doi: https://doi.org/10.1177/21925682231182341

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Topography of the chest organs at the level of the thoracic spine. Example of medial malposition

Download (179KB)
3. Fig. 2. Displacement of the structures of the spinal canal to the concave side of the deformation. A - spinal cord at the level of the Th11 vertebra (myelography)

Download (148KB)
4. Fig. 3. Topography of the chest organs at the level of the thoracic spine. Example of lateral malposition

Download (169KB)
5. Fig. 4. Topography of the vessels in front of the spinal column at the level of the thoracic spine. Example of anterior malposition: A - aorta; B - v. Hemiazygos; C - v. Azygos

Download (182KB)
6. Fig. 5. 3D model of the deformation with guides for transpedicular screws

Download (203KB)
7. Fig. 6. Graph of the dependence of the frequency of malpositions in group I (free-hand): A - on the rotation of the apical vertebra (r = 0.713; p < 0.001); B - on the angle of deformation according to Cobb (r = 0.657; p < 0.05)

Download (144KB)
8. Fig. 7. Graph of the dependence of the frequency of malpositions in group II (O-arm): A - on the rotation of the apical vertebra (r = 0.072; p = 0.734); B - on the angle of deformation according to Cobb (r = 0.298; p = 0.147)

Download (135KB)
9. Fig. 8. Graph of the dependence of the frequency of malpositions in group III (3D): A - on the rotation of the apical vertebra (r = 0.491, p < 0.05); B - on the angle of deformation according to Cobb (r = 0.423; p < 0.05)

Download (130KB)
10. Fig. 9. Clinical example. Patient A., 15 years old: A — radiograph before surgery; B — result of the second stage of surgery; C — critical malpositions at the Th11 and L levels.

Download (198KB)

Copyright (c) 2025 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».