The Role of Modern Endovascular Innovative Technologies in Changing the Treatment Strategy for Coronary Heart Disease (Literature Review)
- Authors: Alekyan B.G.1,2, Meleshenko N.N.1, Atroshenko V.V.1
-
Affiliations:
- National Medical Research Center for Surgery named after A.V. Vishnevsky
- Russian Medical Academy of Continuing Professional Education
- Issue: Vol 80, No 2 (2025)
- Pages: 121-130
- Section: CARDIOLOGY AND CARDIOVASCULAR SURGERY: CURRENT ISSUES
- URL: https://ogarev-online.ru/vramn/article/view/310201
- DOI: https://doi.org/10.15690/vramn17976
- ID: 310201
Cite item
Abstract
Every year the number of endovascular diagnostic and therapeutic procedures performed in patients with coronary artery disease increases. Today, endovascular myocardial revascularization is the main method of treatment for coronary artery disease. The widespread use of this method became possible thanks to the development and introduction into clinical practice of modern drug-eluting stents, and the use of intravascular imaging and functional assessment of the coronary bed led to the optimization of PCI results and a change in the treatment strategy for patients with coronary artery disease. This review article presents both historical aspects of the development and implementation of these technologies, as well as modern studies and meta-analyses depicting the results of the use of these technologies in patients with multivessel or “severe” (diffuse, tandem, extended, calcified) lesions of the coronary arteries.
Full Text
##article.viewOnOriginalSite##About the authors
Bagrat G. Alekyan
National Medical Research Center for Surgery named after A.V. Vishnevsky; Russian Medical Academy of Continuing Professional Education
Email: bagrat.alekyan@gmail.com
ORCID iD: 0000-0001-6509-566X
SPIN-code: 1544-2818
MD, PhD, Professor, Academician of the RAS
Russian Federation, 27 Bolshaya Serpukhovskaya str., 117997, Moscow; 125993, MoscowNikolay N. Meleshenko
National Medical Research Center for Surgery named after A.V. Vishnevsky
Email: dr.meleshenko_nn@mail.ru
ORCID iD: 0000-0002-4204-1092
SPIN-code: 2271-1880
MD, PhD
Russian Federation, 27 Bolshaya Serpukhovskaya str., 117997, MoscowVyacheslav V. Atroshenko
National Medical Research Center for Surgery named after A.V. Vishnevsky
Author for correspondence.
Email: atroshenko96@mail.ru
ORCID iD: 0009-0004-2809-9484
MD
Russian Federation, 27 Bolshaya Serpukhovskaya str., 117997, MoscowReferences
- Алшибая М.Д., Бокерия Л.А., Глянцев С.П. История коронарного шунтирования от А. Карреля до Р.Фаволоро // Бюллетень НЦССХ им. А.Н. Бакулева РАМН. Сердечно-сосудистые заболевания. — 2017. — Т. 18. — № S6. — C. 62. [Alshibaya MD, Boqueria LA, Glyantsev SP. History of coronary bypass surgery from A. Carrel to R. Favoloro. Bulletin of the Scientific Center for Agricultural Sciences named after. A.N. Bakulev RAMS. Cardiovascular Diseases. 2017;18(S6):62. (In Russ.)]
- Demikhov V. Experimental Transplantation of vital organs. Authorized translation from the Russian by Basil Haigh. N.Y.: Consultant’s Bureau; 1962.
- Kolessov VI. Mammary artery-coronary artery anastomosis as method of treatment for angina pectoris. J Thorac Cardiovasc Surg. 1967;54(4):535–544.
- Favaloro RG. Saphenous vein autograft replacement of severe segmental coronary artery occlusion: operative technique. Ann Thorac Surg. 1968;5(4):334–339. doi: https://doi.org/10.1016/s0003-4975(10)66351-5
- Barton M, Grüntzig J, Husmann M, et al. Balloon Angioplasty — The Legacy of Andreas Grüntzig, M.D. (1939–1985). Front Cardiovasc Med. 2014;1:15. doi: https://doi.org/10.3389/fcvm.2014.00015
- Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty. N Engl J Med. 1987;316(12):701–706. doi: https://doi.org/10.1056/nejm198703193161201
- Mak KH, Topol EJ. Clinical Trials to Prevent Restenosis after Percutaneous Coronary Revascularization. Ann N Y Acad Sci. 1997;811:255–288. doi: https://doi.org/10.1111/j.1749-6632.1997.tb52007.x
- Алекян Б.Г., Григорьян А.М., Стаферов А.В., и др. Рентгенэндоваскулярная диагностика и лечение заболеваний сердца и сосудов в Российской Федерации – 2022 год // Эндоваскулярная хирургия. — 2023. — № 10 (Специальный выпуск). — S5–S256. [Alekyan BG, Grigoryan AM, Staferov AV, et al. Еndovascular diagnostics and treatment in the Russian Federation — 2022. Russian Journal of Endovascular Surgery. 2023;10(Special Issue):S5–S256. (In Russ.)] doi: https://doi.org/10.24183/2409-4080-2023-10S-S5-S256
- Holmes DR Jr, Leon MB, Moses JW, et al. Analysis of 1-year clinical outcomes in the SIRIUS trial: a randomized trial of a sirolimus-eluting stent versus a standard stent in patients at high risk for coronary restenosis. Circulation. 2004;109(5):634–640. doi: https://doi.org/10.1161/01.CIR.0000112572.57794.22
- Stone GW, Ellis SG, Cannon L, et al. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease. JAMA. 2005;294(10):1215–1223. doi: https://doi.org/10.1001/jama.294.10.1215
- Прохорихин А.А., Байструков В.И., Гражданкин И.О., и др. Простое слепое проспективное рандомизированное мультицентровое исследование эффективности и безопасности сиролимус-доставляющего коронарного стента «Калипсо» и эверолимус-доставляющего коронарного срента XiencePrime: результаты исследования «ПАТРИОТ» // Патология кровообращения и кардиохирургия. — 2017. — Т. 21. — № 3. — С. 76–85. [Prokhorikhin AA, Baystrukov VI, Grazhdankin IO, et al. A single-blind, prospective, randomized, multicenter study of the efficacy and safety of the sirolimus-eluting coronary stent Calipso and the everolimus-eluting coronary stent XiencePrime: results of the PATRIOT study. Blood circulation pathology and cardiac surgery. 2017;21(3):76–85. (In Russ.)] doi: http://dx.doi.org/10.21688/1681-3472-2017-3-76-85
- Blum M, Cao D, Mehran R, et al. Device profile of the Resolute Onyx Zotarolimus eluting coronary stent system for the treatment of coronary artery disease: overview of its safety and efficacy. Expert Rev Med Devices. 2020;17(4):257–265. doi: https://doi.org/10.1080/17434440.2020.1736037
- Von Birgelen C, Sen H, Lam MK, et al. Third-generation zotarolimus-eluting and everolimus-eluting stents in all-comer patients requiring a percutaneous coronary intervention (DUTCH PEERS): a randomised, single-blind, multicentre, non-inferiority trial. Lancet. 2014;383(9915):413–423. doi: https://doi.org/10.1016/s0140-6736(13)62037-1
- Otsuka F, Nakazawa G, Nakano M, et al. The Pathology of Neoatherosclerosis in Human Coronary Bare Metal and Drug-Eluting Stent Implants. J Am Coll Cardiol. 2011;57(14):Е2051. doi: https://doi.org/10.1016/s0735-1097(11)62051-2
- Nakayoshi T, Ueno T, Sasaki K, et al. Differential angioscopic findings of neointimal coverage among first-, second-, and next generation drug-eluting stents. Int J Cardiol. 2016;223:450–451. doi: https://doi.org/10.1016/j.ijcard.2016.08.175
- Lee SWL, Tam FCC, Chan KKW, et al. Establishment of healing profile and neointimal transformation in the new polymer-free biolimus A9-coated coronary stent by longitudinal sequential optical coherence tomography assessments: the EGO-BIOFREEDOM study. EuroIntervention. 2018;14(7):780–788. doi: https://doi.org/10.4244/eij-d-18-00061
- Haude M, Toelg R, Lemos PA, et al. Sustained Safety and Performance of a Second-Generation Sirolimus-Eluting Absorbable Metal Scaffold: Long-Term Data of the BIOSOLVE-II First-in-Man Trial at 5 Years. Cardiovasc Revasc Med. 2022;38:106–110. doi: https://doi.org/10.1016/j.carrev.2021.07.017
- Serruys PW, Garcia-Garcia HM, Onuma Y. From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade? Eur Heart J. 2011;33(1):16–25. doi: https://doi.org/10.1093/eurheartj/ehr384
- Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet. 2008;371(9616):899–907. doi: https://doi.org/10.1016/s0140-6736(08)60415-8
- Serruys PW, Onuma Y, Ormiston JA, et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation. 2010;122(22):2301–2312. doi: https://doi.org/10.1161/circulationaha.110.970772
- Ali ZA, Gao R, Kimura T, et al. Three-Year Outcomes with the Absorb Bioresorbable Scaffold: Individual-Patient-Data Meta-Analysis from the ABSORB Randomized Trials. Circulation. 2018;137(5):464–479. doi: https://doi.org/10.1161/circulationaha.117.031843
- Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE- II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet. 2016;387(10013);31–39. doi: https://doi.org/10.1016/s0140-6736(15)00447-x
- Bennett J, Wlodarczak A, Montorsi P, et al. TCT-61 Safety and Efficacy of the Resorbable Magnesium Scaffold Magmaris in a Real-World Setting — 24-Month Follow-up of the Full Cohort (2,066 subjects) of the BIOSOLVE-IV Registry. J Am Coll Cardiol. 2022;80(12):B25. doi: https://doi.org/10.1016/j.jacc.2022.08.074
- Алекян Б.Г., Новак А.Я., Мелешенко Н.Н., и др. Первый случай имплантации биорезорбируемого сосудистого каркаса Magmaris в Российской Федерации // Эндоваскулярная хирургия. — 2022. — Т. 9. — № 4. — С. 396–401. [Alekyan BG, Novak AYa, Meleshenko NN, et al. The first case of a bioresorbable vascular scaffold Magmaris implantation in the Russian Federation. Russian Journal of Endovascular Surgery. 2022;9(4):396–401. (In Russ.)] doi: https://doi.org/10.24183/2409-4080-2022-9-4-396-401
- Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–972. doi: https://doi.org/10.1056/NEJMoa0804626
- Campos CM, Stanetic BM, Farooq V, et al. Risk stratification in 3-vessel coronary artery disease: Applying the SYNTAX Score II in the Heart Team Discussion of the SYNTAX II trial. Catheter Cardiovasc Interv. 2015;86(6):E229–E238. doi: https://doi.org/10.1002/ccd.25907
- Corrigendum to: ‘Clinical outcomes of state-of-the-art percutaneous coronary revascularization in patients with de novo three vessel disease: 1-year results of the SYNTAX II study. Eur Heart J. 2018;39(18):1619. doi: https://doi.org/10.1093/eurheartj/ehx547
- Banning AP, Serruys P, De Maria GL, et al. Five-year outcomes after state-of-the-art percutaneous coronary revascularization in patients with de novo three-vessel disease: final results of the SYNTAX II study. Eur Heart J. 2022;43(13):1307–1316. doi: https://doi.org/10.1093/eurheartj/ehab703
- Groenland FTW, Neleman T, Kakar H, et al. Intravascular ultrasound-guided versus coronary angiography-guided percutaneous coronary intervention in patients with acute myocardial infarction: A systematic review and meta-analysis. Int J Cardiol. 2022;353:35–42. doi: https://doi.org/10.1016/j.ijcard.2022.01.021
- Darmoch F, Alraies MC, Al‐Khadra, et al. Intravascular Ultrasound Imaging-Guided Versus Coronary Angiography-Guided Percutaneous Coronary Intervention: A Systematic Review and Meta‐Analysis. J Am Heart Assoc. 2020;9(5). doi: https://doi.org/10.1161/jaha.119.013678
- Kim Y, Bae S, Johnson TW, et al. Role of Intravascular Ultrasound‐Guided Percutaneous Coronary Intervention in Optimizing Outcomes in Acute Myocardial Infarction. J Am Heart Assoc. 2022;11(5):е023481. doi: https://doi.org/10.1161/JAHA.121.023481
- Hong SJ, Zhang JJ, Mintz GS, et al. Improved 3-Year Cardiac Survival After IVUS-Guided Long DES Implantation. JACC Cardiovasc Interv. 2022;15(2):208–216. doi: https://doi.org/10.1016/j.jcin.2021.10.020
- Ali ZA, Landmesser U, Maehara A, et al. Optical Coherence Tomography-Guided versus Angiography-Guided PCI. N Engl J Med. 2023;389(16):1466–1476. doi: https://doi.org/10.1056/NEJMoa2305861
- Jiang S, Fang C, Xu X, et al. Identification of High-Risk Coronary Lesions by 3-Vessel Optical Coherence Tomography. J Am Coll Cardiol. 2023;81(13):1217–1230. doi: https://doi.org/10.1016/j.jacc.2023.01.030
- Lee JM, Choi KH, Song YB, et al. Intravascular Imaging-Guided or Angiography-Guided Complex PCI. N Engl J Med. 2023;388(18):1668–1679. doi: https://doi.org/10.1056/nejmoa2216607
- Sattar Y, Abdul Razzack A, Kompella R, et al. Outcomes of intravascular ultrasound versus optical coherence tomography guided percutaneous coronary angiography: A meta regression-based analysis. Catheter Cardiovasc Interv. 2021;99(1):Е1–Е11. doi: https://doi.org/10.1002/ccd.29976
- Kolh P, Windecker S, Alfonso F, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg. 2014;46(4):517–592. doi: https://doi.org/10.1093/ejcts/ezu366
- Fazel R, Yeh RW, Cohen DJ, et al. Intravascular imaging during percutaneous coronary intervention: temporal trends and clinical outcomes in the USA. Eur Heart J. 2023;44(38):3845–3855. doi: https://doi.org/10.1093/eurheartj/ehad430
- Sreenivasan J, Reddy RK, Jamil Y, et al. Intravascular Imaging-Guided Versus Angiography-Guided Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis of Randomized Trials. J Am Heart Assoc. 2024;13(2):e031111. doi: https://doi.org/10.1161/JAHA.123.031111
- Sheth TN, Pinilla-Echeverri N, Mehta SR, et al. First-in-Human Images of Coronary Atherosclerosis and Coronary Stents Using a Novel Hybrid Intravascular Ultrasound and Optical Coherence Tomographic Catheter. JACC Cardiovasc Interv. 2018;11(23):2427–2430. doi: https://doi.org/10.1016/j.jcin.2018.09.022
- Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33(1):87–94. doi: https://doi.org/10.1016/0002-9149(74)90743-7
- Pijls NH, van Son JA, Kirkeeide RL, et al. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87(4):1354–1367. doi: https://doi.org/10.1161/01.cir.87.4.1354
- Zimmermann FM, Ferrara A, Johnson NP, et al. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J. 2015;36(45):3182–3188. doi: https://doi.org/10.1093/eurheartj/ehv452
- De Bruyne B, Pijls NHJ, Kalesan B, et al. Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. N Eng J Med. 2012;367(11):991–1001. doi: https://doi.org/10.1056/nejmoa1205361
- Guidelines on myocardial revascularization. Eur Heart J. 2010;31(20): 2501–2555. doi: https://doi.org/10.1093/eurheartj/ehq277
- Алекян Б.Г., Карапетян Н.Г., Мелешенко Н.Н., и др. Результаты реваскуляризации миокарда у больных ишемической болезнью сердца с пограничным поражением коронарных артерий под контролем моментального резерва кровотока // Эндоваскулярная хирургия. — 2024. — Т. 8. — № 1. — С. 20–26. [Alekyan BG, Karapetyan NG, Meleshenko NN, et al. Results of myocardial revascularization in patients with coronary artery disease with intermediate coronary stenosis under control of instantaneous wave-free ratio. 2021;8(1):20–26. (In Russ.)] doi: https://doi.org/10.24183/2409-4080-2021-8-1-20-26
- Lee JM, Kim HK, Park KH, et. al. Fractional flow reserve versus angiography-guided strategy in acute myocardial infarction with multivessel disease: a randomized trial. Eur Heart J. 2023;44(6):473–484. doi: https://doi.org/10.1093/eurheartj/ehac763
- Fearon WF, Zimmermann FM., De Bruyne B, et al. Fractional Flow Reserve-Guided PCI as Compared with Coronary Bypass Surgery. N Eng J Med. 2022;386(2):128–137. doi: https://doi.org/10.1056/nejmoa2112299
- Escaned J, Echavarría-Pinto M, Garcia-Garcia, et al. Prospective Assessment of the Diagnostic Accuracy of Instantaneous Wave-Free Ratio to Assess Coronary Stenosis Relevance: Results of ADVISE II International, Multicenter Study (ADenosine Vasodilator Independent Stenosis Evaluation II). JACC Cardiovasc Interv. 2015;8(6):824–833. doi: https://doi.org/10.1016/j.jcin.2015.01.029
- Davies JE, Sen S, Dehbi HM, et al. Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI. N Engl J Med. 2017;376(19):1824–1834. doi: https://doi.org/10.1056/nejmoa1700445
- Götberg M, Christiansen EH, Gudmundsdottir IJ, et al. Instantaneous Wave-Free Ratio versus Fractional Flow Reserve to Guide PCI. N Engl J Med. 2017;376(19):1813–1823. doi: https://doi.org/10.1056/nejmoa1616540
- Eftekhari A, Holck EN, Westra J, et al. Five-year major cardiovascular events are increased when coronary revascularization is guided by instantaneous wave-free ratio compared to fractional flow reserve: a pooled analysis of iFR-SWEDEHEART and DEFINE-FLAIR trials. Eur Heart J. 2023;44(41):4376–4384. doi: https://doi.org/10.1093/eurheartj/ehad582
- Kim HL, Koo BK, Nam CW, et al. Clinical and physiological outcomes of fractional flow reserve-guided percutaneous coronary intervention in patients with serial stenoses within one coronary artery. JACC Cardiovasc Interv. 2012;5(10):1013–1018. doi: https://doi.org/10.1016/j.jcin.2012.06.017
- Kikuta Y, Cook CM, Sharp ASP, et al. Pre-Angioplasty Instantaneous Wave-Free Ratio Pullback Predicts Hemodynamic outcome in Humans with Coronary Artery Disease: Primary Results of the International Multicenter iFR GRADIENT Registry. JACC Cardiovasc Interv. 2018;11(8):757–767. doi: https://doi.org/10.1016/j.jcin.2018.03.005
- Matsuo A, Kasahara T, Ariyoshi M, et al. Utility of angiography-physiology coregistration maps during percutaneous coronary intervention in clinical practice. Cardiovasc Interv Ther. 2021;36(2):208–218. doi: https://doi.org/10.1007/s12928-020-00668-0
- Omori H, Kawase Y, Mizukami T, et al. Comparisons of Nonhyperemic Pressure Ratios: Predicting Functional Results of Coronary Revascularization Using Longitudinal Vessel Interrogation. JACC Cardiovasc Interv. 2020;13(22):2688–2698. doi: https://doi.org/10.1016/j.jcin.2020.06.060
- Nijjer SS, Sen S, Petraco R, et al. Pre-angioplasty instantaneous wave-free ratio pullback provides virtual intervention and predicts hemodynamic outcome for serial lesions and diffuse coronary artery disease. JACC Cardiovasc Interv. 2014;7(12):1386–1396. doi: https://doi.org/10.1016/j.jcin.2014.06.015
- Patel MR, Jeremias A, Maehara A, et al. 1-Year Outcomes of Blinded Physiological Assessment of Residual Ischemia after Successful PCI. JACC Cardiovasc Interv. 2022;15(1):52–61. doi: https://doi.org/10.1016/j.jcin.2021.09.042
- Jeremias A, Davies JE, Maehara A, et al. Blinded Physiological Assessment of Residual Ischemia after Successful Angiographic Percutaneous Coronary Intervention: The DEFINE PCI Study. JACC Cardiovasc Interv. 2019;12(20):1991–2001. doi: https://doi.org/10.1016/j.jcin.2019.05.054
Supplementary files
