Bacterial vaginosis: the role of microbiota and prospects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bacterial vaginosis (BV) is a widespread disease among women of reproductive age worldwide and is associated with unfavorable gynecological and obstetric outcomes. The polymicrobial nature of the disease, the high recurrence rate (up to 80%) and asymptomatic course (up to 50%), the formation of an extensive layer of bacterial biofilms resistant to traditional therapy necessitate the search for new approaches to diagnosis and treatment options. The purpose of this review is to summarize research on the role of individual representatives of the female reproductive tract microbiota in the development of bacterial vaginosis, to consider the inter-bacterial interaction of BV-associated microorganisms using biofilm as an example, and to review approaches to the diagnosis and treatment of the disease. The vaginal microbiota is a complex and dynamic ecosystem, subject to constant fluctuations throughout a woman’s life, and the genus Lactobacillus plays an important role in maintaining the state of the vaginal microbiome. Excessive growth of bacteria such as Gardnerella spp., Fannyhessea vaginae, Prevotella bivia, Mobiluncus spp., Peptostreptococcus anaerobius, Megasphaera spp., etc. It mediates the development of bacterial vaginosis, and therefore it is necessary to study modern concepts of microorganisms involved in the development of BV, in terms of both their individual characteristics and pathogenicity factors, as well as their ability to associate with each other, including through the formation of biofilms.

About the authors

Madina M. Satueva

LLC Polyclinika.ru

Email: madina20991@mail.ru
ORCID iD: 0009-0001-2996-0019
Russian Federation, Moscow

Artem V. Lyamin

Samara State Medical University

Email: a.v.lyamin@samsmu.ru
ORCID iD: 0000-0002-5905-1895
SPIN-code: 6607-8990

MD, PhD, Assistant Professor

Russian Federation, Samara

Anna V. Kolsanova

Samara State Medical University

Email: a.v.kazakova@samsmu.ru
ORCID iD: 0000-0002-9483-8909
SPIN-code: 5129-5915

MD, PhD, Assistant Professor

Russian Federation, Samara

Maria P. Zhilkina

Samara State Medical University

Email: jilkina.masha@yandex.ru
ORCID iD: 0009-0002-3400-300X
SPIN-code: 5728-0366
Russian Federation, Samara

Dmitriy V. Alekseev

Samara State Medical University

Author for correspondence.
Email: d.v.alekseev@samsmu.ru
ORCID iD: 0000-0002-8864-4956
SPIN-code: 6991-8918

Laboratory Specialist

Russian Federation, Samara

References

  1. Peebles K, Velloza J, Balkus JE, et al. High Global Burden and Costs of Bacterial Vaginosis: A Systematic Review and Meta-Analysis. Sex Transm Dis. 2019;46(5):304–311. doi: https://doi.org/10.1097/OLQ.0000000000000972
  2. van de Wijgert J, Verwijs MC. Lactobacilli-containing vaginal probiotics to cure or prevent bacterial or fungal vaginal dysbiosis: a systematic review and recommendations for future trial designs. BJOG. 2020;127(2):287–299. doi: https://doi.org/10.1111/1471-0528.15870
  3. Janulaitiene M, Paliulyte V, Grinceviciene S, et al. Prevalence and distribution of Gardnerella vaginalis subgroups in women with and without bacterial vaginosis. BMC Infect Dis. 2017;17(1):394. doi: https://doi.org/10.1186/s12879-017-2501-y
  4. Armstrong E, Kaul R. Beyond bacterial vaginosis: vaginal lactobacilli and HIV risk. Microbiome. 2021;9(1):239. doi: https://doi.org/10.1186/s40168-021-01183-x
  5. Schwebke JR, Nyirjesy P, Dsouza M, et al. Vaginitis and risk of sexually transmitted infections: results of a multi-center U.S. clinical study using STI nucleic acid amplification testing. J Clin Microbiol. 2024;62(9):e0081624. doi: https://doi.org/10.1128/jcm.00816-24
  6. Brusselaers N, Shrestha S, van de Wijgert J, et al. Vaginal dysbiosis and the risk of human papillomavirus and cervical cancer: systematic review and meta-analysis. Am J Obstet Gynecol. 2019;221(1):9–18.e8. doi: https://doi.org/10.1016/j.ajog.2018.12.011
  7. Gondwe T, Ness R, Totten PA, et al. Novel bacterial vaginosis-associated organisms mediate the relationship between vaginal douching and pelvic inflammatory disease. Sex Transm Infect. 2020;96(6):439–444. doi: https://doi.org/10.1136/sextrans-2019-054191
  8. Kalpana N, Amirtha C, Lavoanya P, et al. Prevalence of Bacterial Vaginosis and Its Association with Preterm Birth in a Tertiary Care Hospital in Chennai: A Cross-Sectional Study. Cureus. 2024;16(4):e57502. doi: https://doi.org/10.7759/cureus.57502
  9. Shimaoka M, Yo Y, Doh K, et al. Association between preterm delivery and bacterial vaginosis with or without treatment. Sci Rep. 2019;9(1):509. doi: https://doi.org/10.1038/s41598-018-36964-2
  10. Nuriel-Ohayon M, Neuman H, Koren O. Microbial Changes during Pregnancy, Birth, and Infancy. Front Microbiol. 2016;7:1031. doi: https://doi.org/10.3389/fmicb.2016.01031
  11. Abou Chacra L, Fenollar F, Diop K. Bacterial Vaginosis: What Do We Currently Know? Front Cell Infect Microbiol. 2022;11:672429. doi: https://doi.org/10.3389/fcimb.2021.672429
  12. Gao X, Louwers YV, Laven JSE, et al. Clinical Relevance of Vaginal and Endometrial Microbiome Investigation in Women with Repeated Implantation Failure and Recurrent Pregnancy Loss. Int J Mol Sci. 2024;25(1):622. doi: https://doi.org/10.3390/ijms25010622
  13. Savicheva A.M. Molecular Testing for the Diagnosis of Bacterial Vaginosis. Int J Mol Sci. 2023;25(1):449. doi: https://doi.org/10.3390/ijms25010449
  14. Armstrong E, Kaul R. Beyond bacterial vaginosis: vaginal lactobacilli and HIV risk. Microbiome. 2021;9(1):239. doi: https://doi.org/10.1186/s40168-021-01183-x
  15. Будиловская О.В., Крысанова А.А., Шипицына Е.В., и др. Диагностика вагинальных инфекций с учетом профилей лактобациллярной микрофлоры и локального иммунного ответа слизистой влагалища // Молеклярная медицина. — 2020. — Т. 18. — № 3. — С. 56–64. [Budilovskaya OV, Krysanova AA, Shipitsyna EV, et al. Diagnosis of vaginal infections taking into account the profiles of lactobacillary microflora and the local immune response of the vaginal mucosa. Mol Med. 2020;18(3):56–64. (In Russ.)] doi: https://doi.org/10.29296/24999490-2020-03-07
  16. Happel AU, Kullin B, Gamieldien H, et al. Exploring potential of vaginal Lactobacillus isolates from South African women for enhancing treatment for bacterial vaginosis. PLoS Pathog. 2020;16(6):e1008559. doi: https://doi.org/10.1371/journal.ppat.1008559
  17. Campisciano G, Iebba V, Zito G, et al. Lactobacillus iners and gasseri, Prevotella bivia and HPV Belong to the Microbiological Signature Negatively Affecting Human Reproduction. Microorganisms. 2020;9(1):39. doi: https://doi.org/10.3390/microorganisms9010039
  18. Chen X, Lu Y, Chen T, et al. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol. 2021;11:631972. doi: https://doi.org/10.3389/fcimb.2021.631972
  19. Крысанова А.А. Gardnerella vaginalis: генотипическое и фенотипическое разнообразие, факторы вирулентности и роль в патогенезе бактериального вагиноза // Журнал акушерства и женских болезней. — 2019. — Т. 68. — № 1. — С. 59–68. [Krysanova AA. Gardnerella vaginalis: genotypic and phenotypic diversity, virulence factors and role in the pathogenesis of bacterial vaginosis. Journal of Obstetrics and Women’s Diseases. 2019;68(1):59–68. (In Russ.)] doi: https://doi.org/10.17816/JOWD68159-68
  20. Kairys N, Carlson K, Garg M. Bacterial Vaginosis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024.
  21. Kalia N, Singh J, Kaur M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Ann Clin Microbiol Antimicrob. 2020;19(1):5. doi: https://doi.org/10.1186/s12941-020-0347-4
  22. Новикова С.В., Цивцивадзе Е.Б., Федотова А.В. Бактериальный вагиноз как типичная биопленочная инфекция // Российский вестник акушера-гинеколога. — 2018. — Т. 18. — № 4. — С. 97–100. [Novikova SV, Tsivtsivadze EB, Fedotova AV. Bacterial vaginosis as a typical biofilm infection. Russian Bulletin of Obstetrician-Gynecologist. 2018;18(4):97–100. (In Russ.)] doi: https://doi.org/10.17116/rosakush201818497
  23. Swidsinski A, Verstraelen H, Loening-Baucke V, et al. Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis. PLoS One. 2013;8(1):e53997. doi: https://doi.org/10.1371/journal.pone.0053997
  24. Muzny CA, Łaniewski P, Schwebke JR, et al. Host-vaginal microbiota interactions in the pathogenesis of bacterial vaginosis. Curr Opin Infect Dis. 2020;33(1):59–65. doi: https://doi.org/10.1097/QCO.0000000000000620
  25. Хрянин А.А. Биопленки микроорганизмов: современные представления // Антибиотики и химиотерапия. — 2020. — Т. 65. — № 5. — С. 70–77. [Khryanin AA. Biofilms of microorganisms: modern concepts. Antibiotics and chemotherapy. 2020;65(5):70–77. (In Russ.)] doi: https://doi.org/10.37489/0235-2990-2020-65-5-6-70-77
  26. Swidsinski S, Moll WM, Swidsinski A. Bacterial Vaginosis-Vaginal Polymicrobial Biofilms and Dysbiosis. Dtsch Arztebl Int. 2023; 120(20):347–354. doi: https://doi.org/10.3238/arztebl.m2023.0090
  27. Sousa LGV, Muzny CA, Cerca N. Key bacterial vaginosis-associated bacteria influence each other’s growth in biofilms in rich media and media simulating vaginal tract secretions. Biofilm. 2025;9:100247. doi: https://doi.org/10.1016/j.bioflm.2024.100247
  28. Castro J, Rosca AS, Cools P, et al. Gardnerella vaginalis Enhances Atopobium vaginae Viability in an in vitro Model. Front Cell Infect Microbiol. 2020;10:83. doi: https://doi.org/10.3389/fcimb.2020.00083
  29. Воропаева Н.М., Белькова Н.Л., Немченко У.М., и др. Микроорганизмы, ассоциированные с бактериальным вагинозом: разнообразие и клинико-диагностическое значение // Acta biomedica scientifica. — 2021. — Т. 6. — № 3. — С. 17–30. [Voropaeva NM, Belkova NL, Nemchenko UM, et al. Microorganisms associated with bacterial vaginosis: diversity and clinical and diagnostic significance. Acta biomedica scientifica. 2021;6(3):17–30. (In Russ.)] doi: https://doi.org/10.29413/ABS.2021-6.3.2
  30. Muzny CA, Blanchard E, Taylor CM, et al. Identification of Key Bacteria Involved in the Induction of Incident Bacterial Vaginosis: A Prospective Study. J Infect Dis. 2018;218(6):966–978. doi: https://doi.org/10.1093/infdis/jiy243
  31. Swidsinski A, Loening-Baucke V, Swidsinski S, et al. Clue Cells and Pseudo Clue Cells in Different Morphotypes of Bacterial Vaginosis. Front Cell Infect Microbiol. 2022;12:905739. doi: https://doi.org/10.3389/fcimb.2022.905739
  32. Barbosa A, Miranda S, Azevedo NF, et al. Imaging biofilms using fluorescence in situ hybridization: seeing is believing. Front Cell Infect Microbiol. 2023;13:1195803. doi: https://doi.org/10.3389/fcimb.2023.1195803
  33. Azeredo J, Azevedo NF, Briandet R, et al. Critical review on biofilm methods. Crit Rev Microbiol. 2017;43(3):313–351. doi: https://doi.org/10.1080/1040841X.2016.1208146
  34. Jung E, Romero R, Suksai M, et al. Clinical chorioamnionitis at term: definition, pathogenesis, microbiology, diagnosis, and treatment. Am J Obstet Gynecol. 2024;230(3S):S807–S840. doi: https://doi.org/10.1016/j.ajog.2023.02.002
  35. Agarwal K, Choudhury B, Robinson LS, et al. Resident microbes shape the vaginal epithelial glycan landscape. Sci Transl Med. 2023;15(724):eabp9599. doi: https://doi.org/10.1126/scitranslmed.abp9599
  36. Rahman N, Mian MF, Hayes CL, et al. G. vaginalis increases HSV-2 infection by decreasing vaginal barrier integrity and increasing inflammation in vivo. Front Immunol. 2024;15:1487726. doi: https://doi.org/10.3389/fimmu.2024.1487726
  37. Dohadwala S, Shah P, Farrell M, et al. Sialidases derived from Gardnerella vaginalis and Prevotella timonensis remodel the sperm glycocalyx and impair sperm function. bioRxiv. 2025;2025.02.01.636076. doi: https://doi.org/10.1101/2025.02.01.636076
  38. Munch MM, Strenk SM, Srinivasan S, et al. Gardnerella Species and Their Association with Bacterial Vaginosis. J Infect Dis. 2024;230(1):e171–e181. doi: https://doi.org/10.1093/infdis/jiae026
  39. Qin H, Xiao B. Research Progress on the Correlation between Gardnerella Typing and Bacterial Vaginosis. Front Cell Infect Microbiol. 2022;12:858155. doi: https://doi.org/10.3389/fcimb.2022.858155
  40. Randis TM, Ratner AJ. Gardnerella and Prevotella: Co-conspirators in the Pathogenesis of Bacterial Vaginosis. J Infect Dis. 2019;220(7):1085–1088. doi: https://doi.org/10.1093/infdis/jiy705
  41. Воропаева Н.М., Белькова Н.Л., Немченко У.М., и др. Микроорганизмы, ассоциированные с бактериальным вагинозом: разнообразие и клинико-диагностическое значение // Acta biomedica scientifica. — 2021. — Т. 6. — № 3. — С. 17–30. [Voropaeva NM, Belkova NL, Nemchenko UM, et al. Microorganisms associated with bacterial vaginosis: diversity and clinical and diagnostic significance. Acta biomedica scientifica. 2021;6(3):17–30. (In Russ.)] doi: https://doi.org/10.29413/ABS.2021-6.3.2
  42. Sousa LGV, Muzny CA, Cerca N. Key bacterial vaginosis-associated bacteria influence each other's growth in biofilms in rich media and media simulating vaginal tract secretions. Biofilm. 2025;9:100247. doi: https://doi.org/10.1016/j.bioflm.2024.100247
  43. Pelayo P, Hussain FA, Werlang CA, et al. Prevotella are major contributors of sialidases in the human vaginal microbiome. Proc Natl Acad Sci U S A. 2024;121(36):e2400341121. doi: https://doi.org/10.1073/pnas.2400341121
  44. Segui-Perez C, de Jongh R, Jonkergouw RLW, et al. Prevotella timonensis degrades the vaginal epithelial glycocalyx through high fucosidase and sialidase activities. mBio. 2024;15(9):e0069124. doi: https://doi.org/10.1128/mbio.00691-24
  45. Mendling W, Palmeira-de-Oliveira A, Biber S, et al. An update on the role of Atopobium vaginae in bacterial vaginosis: what to consider when choosing a treatment? A mini review. Arch Gynecol Obstet. 2019;300(1):1–6. doi: https://doi.org/10.1007/s00404-019-05142-8
  46. Himschoot L, Mulinganya G, Rogier T, et al. Prevalence and clinical correlates of Gardnerella spp., Fannyhessea vaginae, Lactobacillus crispatus and L. iners in pregnant women in Bukavu, Democratic Republic of the Congo. Front Cell Infect Microbiol. 2025;14:1514884. doi: https://doi.org/10.3389/fcimb.2024.1514884
  47. Li Y, Wang Y, Liu J. Genomic Insights into the Interspecific Diversity and Evolution of Mobiluncus, a Pathogen Associated with Bacterial Vaginosis. Front Microbiol. 2022;13:939406. doi: https://doi.org/10.3389/fmicb.2022.939406
  48. Dela Cruz EJ, Fiedler TL, Liu C, et al. Genetic Variation in Toll-Like Receptor 5 and Colonization with Flagellated Bacterial Vaginosis-Associated Bacteria. Infect Immun. 2021;89(3):e00060-20. doi: https://doi.org/10.1128/IAI.00060-20
  49. Srinivasan S, Beamer MA, Fiedler TL, et al. Megasphaera lornae sp. nov., Megasphaera hutchinsoni sp. nov., and Megasphaera vaginalis sp. nov.: novel bacteria isolated from the female genital tract. Int J Syst Evol Microbiol. 2019;71(3):004702. doi: https://doi.org/10.1099/ijsem.0.004702
  50. van Teijlingen NH, Helgers LC, Zijlstra-Willems EM, et al. Vaginal dysbiosis associated-bacteria Megasphaera elsdenii and Prevotella timonensis induce immune activation via dendritic cells. J Reprod Immunol. 2020;138:103085. doi: https://doi.org/10.1016/j.jri.2020.103085
  51. Borgogna JC, Shardell MD, Grace SG, et al. Biogenic Amines Increase the Odds of Bacterial Vaginosis and Affect the Growth of and Lactic Acid Production by Vaginal Lactobacillus spp. Appl Environ Microbiol. 2021;87(10):e03068-20. doi: https://doi.org/10.1128/AEM.03068-20
  52. Fettweis JM, Serrano MG, Brooks JP, et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25(6):1012–1021. doi: https://doi.org/10.1038/s41591-019-0450-2
  53. Theis KR, Florova V, Romero R, et al. Sneathia: an emerging pathogen in female reproductive disease and adverse perinatal outcomes. Crit Rev Microbiol. 2021;47(4):517–542. doi: https://doi.org/10.1080/1040841X.2021.1905606
  54. Sóki J, Keszőcze A, Nagy I, et al. An update on ampicillin resistance and β-lactamase genes of Bacteroides spp. J Med Microbiol. 2021;70(8):10.1099/jmm.0.001393. doi: https://doi.org/10.1099/jmm.0.001393
  55. Muzny CA, Cerca N, Elnaggar JH, et al. State of the Art for Diagnosis of Bacterial Vaginosis. J Clin Microbiol. 2023;61(8):e0083722. doi: https://doi.org/10.1128/jcm.00837-22
  56. Kampan NC, Suffian SS, Ithnin NS, et al. Evaluation of BV(®) Blue Test Kit for the diagnosis of bacterial vaginosis. Sex Reprod Healthc. 2011;2(1):1–5. doi: https://doi.org/10.1016/j.srhc.2010.11.002
  57. Workowski KA, Bachmann LH, Chan PA, et al. Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR Recomm Rep. 2021;70(4):1–187. doi: https://doi.org/10.15585/mmwr.rr7004a1
  58. Dols JA, Molenaar D, van der Helm JJ, et al. Molecular assessment of bacterial vaginosis by Lactobacillus abundance and species diversity. BMC Infect Dis. 2016;16:180. doi: https://doi.org/10.1186/s12879-016-1513-3
  59. Abou Chacra L, Drouet H, Ly C, et al. Evaluation of Various Diagnostic Strategies for Bacterial Vaginosis, Including a New Approach Based on MALDI-TOF Mass Spectrometry. Microorganisms. 2024;12(1):111. doi: https://doi.org/10.3390/microorganisms12010111
  60. Joseph RJ, Ser HL, Kuai YH, et al. Finding a Balance in the Vaginal Microbiome: How Do We Treat and Prevent the Occurrence of Bacterial Vaginosis? Antibiotics (Basel). 2021;10(6):719. doi: https://doi.org/10.3390/antibiotics10060719
  61. Cohen CR, Wierzbicki MR, French AL, et al. Randomized Trial of Lactin-V to Prevent Recurrence of Bacterial Vaginosis. N Engl J Med. 2020;382(20):1906–1915. doi: https://doi.org/10.1056/NEJMoa1915254
  62. He Y, Na R, Niu X, et al. Lactobacillus rhamnosus and Lactobacillus casei Affect Various Stages of Gardnerella Species Biofilm Formation. Front Cell Infect Microbiol. 2021;11:568178. doi: https://doi.org/10.3389/fcimb.2021.568178
  63. Zhang Q, Liu Z, Liu L, et al. Prebiotic Maltose Gel Can Promote the Vaginal Microbiota from BV-Related Bacteria Dominant to Lactobacillus in Rhesus Macaque. Front Microbiol. 2021;11:594065. doi: https://doi.org/10.3389/fmicb.2020.594065
  64. Pino A, Mazza T, Matthews MH, et al. Antimicrobial activity of bovine lactoferrin against Gardnerella species clinical isolates. Front Microbiol. 2022;13:1000822. doi: https://doi.org/10.3389/fmicb.2022.1000822
  65. Afifirad R, Darb Emamie A, Golmoradi Zadeh R, et al. Effects of Pro/Prebiotics Alone over Pro/Prebiotics Combined with Conventional Antibiotic Therapy to Treat Bacterial Vaginosis: A Systematic Review. Int J Clin Pract. 2022;2022:4774783. doi: https://doi.org/10.1155/2022/4774783
  66. Armstrong-Buisseret L, Brittain C, Kai J, et al. Lactic acid gel versus metronidazole for recurrent bacterial vaginosis in women aged 16 years and over: the VITA RCT. Health Technol Assess. 2022;26(2):1–170. doi: https://doi.org/10.3310/ZZKH4176
  67. Arroyo-Moreno S, Cummings M, Corcoran DB, et al. Identification and characterization of novel endolysins targeting Gardnerella vaginalis biofilms to treat bacterial vaginosis. NPJ Biofilms Microbiomes. 2022;8(1):29. doi: https://doi.org/10.1038/s41522-022-00285-0
  68. Landlinger C, Tisakova L, Oberbauer V, et al. Engineered Phage Endolysin Eliminates Gardnerella Biofilm without Damaging Beneficial Bacteria in Bacterial Vaginosis Ex Vivo. Pathogens. 2021;10(1):54. doi: https://doi.org/10.3390/pathogens10010054
  69. Castro J, Sousa LGV, França Â, et al. Exploiting the anti‐biofilm effect of the engineered phage Endolysin PM‐477 to disrupt in vitro single‐ and dual‐species biofilms of vaginal pathogens associated with bacterial vaginosis. Antibiotics (Basel). 2022;11(5):558. doi: https://doi.org/10.3390/antibiotics11050558
  70. Lev-Sagie A, Goldman-Wohl D, Cohen Y, et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat Med. 2019;25(10):1500–1504. doi: https://doi.org/10.1038/s41591-019-0600-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».