Possibilities of application of regenerative technologies in gynecology


Cite item

Full Text

Abstract

The article presents a review of publications devoted to the use of regenerative technologies in the treatment of gynecological pathologies. The authors describe possible ways to solve these problems by analyzing the experimental studies conducted in the world. Identified the main indications for tissue engineering: Asherman’s syndrome, primary ovarian failure, infertility caused by chemotherapy, a “niche” in the uterus, endometrial pathology (endometriosis, endometrial problems, etc.), cervical pathology, female genital tract abnormalities, pelvic organ prolapse. The results of clinical trials of cell therapy aimed at treating infertility caused by Asherman syndrome and primary ovarian failure, female genital tract abnormalities, as well as such rare pathology as a “niche” of the uterus. At the preclinical stage, in addition to the above, considered cellular therapy of cervical pathologies, endometrial diseases and pelvic organ prolapse. Eximined cell cultures and the level of their influence on the regeneration of the female reproductive system structures, presented the biological scaffolds that stimulate the growth of stem cells, their effectiveness and shortcomings are covered.

About the authors

Julia V. Denisova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: yuliya.sheveleva.97@mail.ru
ORCID iD: 0000-0003-1753-0537

4th year student of the Medicine of the Future International School

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Ekaterina V. Mandra

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: emandra97@mail.ru
ORCID iD: 0000-0002-5397-9422

4th year student of the Medicine of the Future International School

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Aleksey V. Lyundup

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: lyundup@gmail.com
ORCID iD: 0000-0002-0102-5491
SPIN-code: 4954-3004

MD, PhD

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Yana Y. Sulina

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: ya.suli.na@gmail.com
ORCID iD: 0000-0001-7702-2687
SPIN-code: 7529-5005

MD, PhD

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Leonid S. Aleksandrov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: leonid.aleks@bk.ru
ORCID iD: 0000-0003-2512-5785
SPIN-code: 2738-9662

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Аnton А. Ischenko

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: ra2001_2001@mail.ru
ORCID iD: 0000-0002-4476-4972
SPIN-code: 2306-4571

MD, PhD

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Аnatoliy I. Ischenko

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: liubella.2011@mail.ru
ORCID iD: 0000-0003-3338-1113
SPIN-code: 3294-3251

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Valery V. Beregovykh

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: beregovykh@ramn.ru
ORCID iD: 0000-0002-0210-4570
SPIN-code: 5940-7554

PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

References

  1. Atala A. Advances in tissue and organ replacement. Curr Stem Cell Res Ther. 2008;3(1):21−31. doi: 10.2174/157488808783489435.
  2. Berthiaume F, Maguire T, Yarmush M. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2(1):403−430. doi: 10.1146/annurev-chembioeng-061010-114257.
  3. Zhu B, Murthy S. Stem cell separation technologies. Curr Opin Chem Eng. 2013;2(1):3−7. doi: 10.1016/j.coche.2012.11.002.
  4. Akter F. Tissue engineering made easy. Half Price Books; 2019. Available from: https://www.hpb.com/products/tissue-engineering-made-easy-9780128053614.
  5. Tagler D, Tu T, Smith R, et al. Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels. Tissue Eng Part A. 2012;18(11-12):1229−1238. doi: 10.1089/ten.tea.2011.0418.
  6. Laronda M, Jakus A, Whelan K, et al. Initiation of puberty in mice following decellularized ovary transplant. Biomaterials. 2015;50:20−29. doi: 10.1016/j.biomaterials.2015.01.051.
  7. Pangas S, Saudye H, Shea L, Woodruff T. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Eng. 2003;9(5):1013−1021. doi: 10.1089/107632703322495655.
  8. Krotz S, Robins J, Ferruccio T, et al. In vitro maturation of oocytes via the pre-fabricated self-assembled artificial human ovary. J Assist Reprod Genet. 2010;27(12):743−750. doi: 10.1007/s10815-010-9468-6.
  9. Huet C, Pisselet C, Mandon-Pépin B, et al. Extracellular matrix regulates ovine granulosa cell survival, proliferation and steroidogenesis: relationships between cell shape and function. J Endocrinol. 2001;169(2):347−360. doi: 10.1677/joe.0.1690347.
  10. Kreeger P, Woodruff T, Shea L. Murine granulosa cell morphology and function are regulated by a synthetic Arg-Gly-Asp matrix. Mol Cell Endocrinol. 2003;205(1-2):1−10. doi: 10.1016/s0303-7207(03)00209-0.
  11. Kreeger P, Deck J, Woodruff T, Shea L. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials. 2006;27(5):714−723. doi: 10.1016/j.biomaterials.2005.06.016.
  12. Ghadami M, El-Demerdash E, Zhang D, et al. Bone marrow transplantation restores follicular maturation and steroid hormones production in a mouse model for primary ovarian failure. PLoS One. 2012;7(3):e32462. doi: 10.1371/journal.pone.0032462.
  13. Mohamed S, Shalaby S, Abdelaziz M, et al. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reprod Sci. 2018;25(1):51−63. doi: 10.1177/1933719117699705.
  14. Santiquet N, Vallières L, Pothier F, et al. Transplanted bone marrow cells do not provide new oocytes but rescue fertility in female mice following treatment with chemotherapeutic agents. Cell Reprogram. 2012;14(2):123−129. doi: 10.1089/cell.2011.0066.
  15. Abd-Allah S, Shalaby S, Pasha H, et al. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy. 2013;15(1):64−75. doi: 10.1016/j.jcyt.2012.08.001.
  16. Herraiz S, Buigues A, Díaz-García C, et al. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion. Fertil Steril. 2018;109(5):908−918.e2. doi: 10.1016/j.fertnstert.2018.01.004.
  17. Lee H, Selesniemi K, Niikura Y, et al. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol. 2007;25(22):3198−3204. doi: 10.1200/jco.2006.10.3028.
  18. Khanmohammadi N, Sameni H, Mohammadi M, et al. Effect of transplantation of bone marrow stromal cell-conditioned medium on ovarian function, morphology and cell death in cyclophosphamide-treated rats. Cell J. 2018;20(1):10−18. doi: 10.22074/cellj.2018.4919.
  19. Liu T, Huang Y, Zhang J, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev. 2014;23(13):1548−1557. doi: 10.1089/scd.2013.0371.
  20. Lai D, Wang F, Yao X, et al. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. J Transl Med. 2015;13(1):155. doi: 10.1186/s12967-015-0516-y.
  21. Zhu S, Hu H, Xu H, et al. Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries. J Cell Mol Med. 2015;19(9):2108−2117. doi: 10.1111/jcmm.12571.
  22. Li J, Mao Q, He J, et al. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther. 2017;8(1):55. doi: 10.1186/s13287-017-0514-5.
  23. Zhang Q, Xu M, Yao X, et al. Human amniotic epithelial cells inhibit granulosa cell apoptosis induced by chemotherapy and restore the fertility. Stem Cell Res Ther. 2015;6(1):152. doi: 10.1186/s13287-015-0148-4.
  24. Zhang Q, Bu S, Sun J, et al. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Res Ther. 2017;8(1):270. doi: 10.1186/s13287-017-0721-0.
  25. Yin N, Zhao W, Luo Q, et al. Restoring ovarian function with human placenta-derived mesenchymal stem cells in autoimmune-induced premature ovarian failure mice mediated by treg cells and associated cytokines. Reprod Sci. 2017;25(7):1073−1082. doi: 10.1177/1933719117732156.
  26. Liu T, Li Q, Wang S, et al. Transplantation of ovarian granulosa-like cells derived from human induced pluripotent stem cells for the treatment of murine premature ovarian failure Mol Med Rep. 2016;13(6):5053−5058. doi: 10.3892/mmr.2016.5191.
  27. Sun M, Wang S, Li Y, et al. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther. 2013;4(4):80. doi: 10.1186/scrt231.
  28. Pregnancy after stem cell transplantation in premature ovarian failure (POF). ClinicalTrials.gov; 2014. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02151890.
  29. Volkova N, Yukhta M, Goltsev A. Mesenchymal stem cells in restoration of fertility at experimental pelvic inflammatory disease. Stem Cells Int. 2017;2017:2014132. doi: 10.1155/2017/2014132.
  30. Manavella D, Cacciottola L, Desmet C, et al. Adipose tissue-derived stem cells in a fibrin implant enhance neovascularization in a peritoneal grafting site: a potential way to improve ovarian tissue transplantation. Hum Reprod. 2018;33(2):270−279. doi: 10.1093/humrep/dex374.
  31. Smith R, Shikanov A, Kniazeva E, et al. Fibrin-mediated delivery of an ovarian follicle pool in a mouse model of infertility. Tissue Engineering Part A. 2014;20(21-22):3021−3030. doi: 10.1089/ten.tea.2013.0675.
  32. Shikanov A, Smith R, Xu M, et al. Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials. 2011;32(10):2524–2531. doi: 10.1016/j.biomaterials.2010.12.027.
  33. Lin N, Li X, Song T, et al. The effect of collagen-binding vascular endothelial growth factor on the remodeling of scarred rat uterus following full-thickness injury. Biomaterials. 2012;33(6):1801−1807. doi: 10.1016/j.biomaterials.2011.11.038.
  34. Li X, Sun H, Lin N, et al. Regeneration of uterine horns in rats by collagen scaffolds loaded with collagen-binding human basic fibroblast growth factor. Biomaterials. 2011;32(32):8172−8181. doi: 10.1016/j.biomaterials.2011.07.050.
  35. Young R, Goloman G. Allo- and xeno-reassembly of human and rat myometrium from cells and scaffolds. Tissue Eng Part A. 2013;19(19-20):2112−2119. doi: 10.1089/ten.tea.2012.0549.
  36. Lü S, Wang H, Liu H, et al. Reconstruction of engineered uterine tissues containing smooth muscle layer in collagen/matrigel scaffold in vitro. Tissue Eng Part A. 2009;15(7):1611−1618. doi: 10.1089/ten.tea.2008.0187.
  37. Campo H, Baptista P, López-Pérez N, et al. De- and recellularization of the pig uterus: a bioengineering pilot study. Biol Reprod. 2017;96(1):34−45. doi: 10.1095/biolre/bio143396.
  38. Song T, Zhao X, Sun H, et al. Regeneration of uterine horns in rats using collagen scaffolds loaded with human embryonic stem cell-derived endometrium-like cells. Tissue Eng Part A. 2015;21(1-2):353−361. doi: 10.1089/ten.tea.2014.0052.
  39. Fan D, Wu S, Ye S, et al. Umbilical cord mesenchyme stem cell local intramuscular injection for treatment of uterine niche. Medicine (Baltimore). 2017;96(44):e8480. doi: 10.1097/md.0000000000008480.
  40. Cervelló I, Gil-Sanchis C, Santamaría X, et al. Human CD133+ bone marrow-derived stem cells promote endometrial proliferation in a murine model of Asherman syndrome. Fertil Steril. 2015;104(6):1552−1560.e1-3. doi: 10.1016/j.fertnstert.2015.08.032.
  41. Wang J, Ju B, Pan C, et al. Application of bone marrow-derived mesenchymal stem cells in the treatment of intrauterine adhesions in rats. Cell Physiol Biochem. 2016;39(4):1553−1560. doi: 10.1159/000447857.
  42. Alawadhi F, Du H, Cakmak H, Taylor H. Bone marrow-derived stem cell (BMDSC) transplantation improves fertility in a murine model of Asherman’s syndrome. PLoS One. 2014;9(5):e96662. doi: 10.1371/journal.pone.0096662.
  43. Kilic S, Yuksel B, Pinarli F, et al. Effect of stem cell application on Asherman syndrome, an experimental rat model. J Assist Reprod Genet. 2014;31(8):975−982. doi: 10.1007/s10815-014-0268-2.
  44. Santamaria X, Cabanillas S, Cervelló I, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod. 2016;31(5):1087−1096. doi: 10.1093/humrep/dew042.
  45. Xu L, Ding L, Wang L, et al. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars. Stem Cell Res Ther. 2017;8(1):84. doi: 10.1186/s13287-017-0535-0.
  46. Zhang L, Li Y, Guan C, et al. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase. Stem Cell Res Ther. 2018;9(1):36. doi: 10.1186/s13287-018-0777-5.
  47. Gan L, Duan H, Xu Q, et al. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions. Cytotherapy. 2017;19(5):603−616. doi: 10.1016/j.jcyt.2017.02.003.
  48. Panchal S, Patel H, Nagori C. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman′s syndrome. J Hum Reprod Sci. 2011;4(1):43−48. doi: 10.4103/0974-1208.82360.
  49. Yang H, Wu S, Feng R, et al. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats. Stem Cell Res Ther. 2017;8(1):267. doi: 10.1186/s13287-017-0718-8.
  50. Ding L, Li X, Sun H, et al. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus. Biomaterials. 2014;35(18):4888−4900. doi: 10.1016/j.biomaterials.2014.02.046.
  51. Shi Q, Gao J, Jiang Y, et al. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells. Stem Cell Res Ther. 2017;8(1):246. doi: 10.1186/s13287-017-0700-5.
  52. Fayazi M, Salehnia M, Ziaei S. In-vitro construction of endometrial-like epithelium using CD146 + mesenchymal cells derived from human endometrium. Reprod Biomed Online. 2017;35(3):241−252. doi: 10.1016/j.rbmo.2017.05.020.
  53. Zhao J, Zhang Q, Wang Y, Li Y. Uterine infusion with bone marrow mesenchymal stem cells improves endometrium thickness in a rat model of thin endometrium. Reprod Sci. 2014;22(2):181−188. doi: 10.1177/1933719114537715.
  54. Jing Z, Qiong Z, Yonggang W, Yanping L. Rat bone marrow mesenchymal stem cells improve regeneration of thin endometrium in rat. Fertil Steril. 2014;101(2):587−594.e3. doi: 10.1016/j.fertnstert.2013.10.053.
  55. Wang H, Lü S, Lin Q, et al. Reconstruction of endometrium in vitro via rabbit uterine endometrial cells expanded by sex steroid. Fertil Steril. 2010;93(7):2385−2395. doi: 10.1016/j.fertnstert.2009.01.091.
  56. Takagi S, Shimizu T, Kuramoto G, et al. Reconstruction of functional endometrium-like tissue in vitro and in vivo using cell sheet engineering. Biochem Biophys Res Commun. 2014;446(1):335−340. doi: 10.1016/j.bbrc.2014.02.107.
  57. Miyazaki K, Maruyama T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials. 2014;35(31):8791−8800. doi: 10.1016/j.biomaterials.2014.06.052.
  58. Kuramoto G, Shimizu T, Takagi S, et al. Endometrial regeneration using cell sheet transplantation techniques in rats facilitates successful fertilization and pregnancy. Fertil Steril. 2018;110(1):172−181.e4. doi: 10.1016/j.fertnstert.2018.03.007.
  59. House M, Sanchez C, Rice W, et al. Cervical tissue engineering using silk scaffolds and human cervical cells. Tissue Eng Part A. 2010;16(6):2101−2112. doi: 10.1089/ten.tea.2009.0457.
  60. De Gregorio V, Imparato G, Urciuolo F, et al. An engineered cell-instructive stroma for the fabrication of a novel full thickness human cervix equivalent in vitro. Adv Healthc Mater. 2017;6(11):1601199. doi: 10.1002/adhm.201601199.
  61. De Filippo R, Yoo J, Atala A. Engineering of vaginal tissue in vivo. Tissue Eng. 2003;9(2):301−306. doi: 10.1089/107632703764664765.
  62. Li Y, Liu F, Zhang Z, et al. Bone marrow mesenchymal stem cells could acquire the phenotypes of epithelial cells and accelerate vaginal reconstruction combined with small intestinal submucosa. Cell Biol Int. 2015;39(11):1225−1233. doi: 10.1002/cbin.10495.
  63. Raya-Rivera A, Esquiliano D, Fierro-Pastrana R, et al. Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet. 2014;384(9940):329−336. doi: 10.1016/s0140-6736(14)60542-0.
  64. Ho M, Heydarkhan S, Vernet D, et al. Stimulating vaginal repair in rats through skeletal muscle-derived stem cells seeded on small intestinal submucosal scaffolds. Obstetrics Gynecology. 2009;114(2, Part 1):300−309. doi: 10.1097/aog.0b013e3181af6abd.
  65. Mangera A, Bullock A, Roman S, et al. Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair. BJU Int. 2013;112(5):674−685. doi: 10.1111/bju.12186.
  66. Ulrich D, Muralitharan R, Gargett C. Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther. 2013;13(10):1387−1400. doi: 10.1517/14712598.2013.826187.
  67. Ulrich D, Edwards S, Su K, et al. Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng Part A. 2014;20(3-4):785−798. doi: 10.1089/ten.tea.2013.0170.
  68. Li Q, Wang J, Liu H, Xie B, Wei L. Tissue-engineered mesh for pelvic floor reconstruction fabricated from silk fibroin scaffold with adipose-derived mesenchymal stem cells. Cell Tissue Res. 2013;354(2):471−480. doi: 10.1007/s00441-013-1719-2.
  69. Ding J, Han Q, Deng M, et al. Induction of human umbilical cord mesenchymal stem cells into tissue-forming cells in a murine model: implications for pelvic floor reconstruction. Cell Tissue Res. 2018;372(3):535−547. doi: 10.1007/s00441-017-2781-y.
  70. Ищенко А.И., Сулина Я.Ю., Люндуп А.В., и др. Создание тканеинженерной конструкции с применением мезенхимальных стволовых клеток костного мозга для хирургического лечения пролапса гениталий // Российский вестник акушера-гинеколога. ― 2017. ― Т.17. ― №1. ― С. 21−26. [Ishchenko AI, Sulina YY, Lyundup AV, et al. Creation of a tissue-engineered construction using bone marrow mesenchymal stem cells for surgical treatment of genital prolapse. Russian Bulletin of Obstetrician-Gynecologist. 2017;17(1):21−26. (In Russ).] doi: 10.17116/rosakush201717121-26.
  71. Сулина Я.Ю., Ищенко А.И., Люндуп А.В., и др. Применение современных биотехнологий в хирургическом лечении пролапса тазовых органов // Российский вестник акушера-гинеколога. ― 2016. ― Т.16. ― №2. ― С. 46−52. [Sulina YY, Ishchenko AI, Lyundup AV, et al. Use of current biotechnologies in the surgical treatment of pelvic prolapse. Russian Bulletin of Obstetrician-Gynecologist. 2016;16(2):46−52. (In Russ).] doi: 10.17116/rosakush201616246-52.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».