Внеклеточные ловушки нейтрофилов (NETs) в патогенезе тромбоза и тромбовоспалительных заболеваний
- Авторы: Бицадзе В.О.1, Слуханчук Е.В.2, Хизроева Д.Х.1, Третьякова М.В.3,4, Шкода А.С.5, Радецкая Л.С.1, Макацария А.Д.1, Элалами И.3,6, Грис Ж.3,7, Грандоне Э.3,8
-
Учреждения:
- Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
- Российский научный центр хирургии им. акад. Б.В. Петровского
- Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
- ООО «Лечебный Центр»
- Городская клиническая больница № 67 им. Л.А. Ворохобова
- Медицинский Университет Сорбонна, Университетский Госпиталь Тенон
- Университет Монпелье, Франция
- Научно-исследовательская больница «Casa Sollievo della Sofferenza»
- Выпуск: Том 76, № 1 (2021)
- Страницы: 75-85
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ КАРДИОЛОГИИ И СЕРДЕЧНО-СОСУДИСТОЙ ХИРУРГИИ
- URL: https://ogarev-online.ru/vramn/article/view/125714
- DOI: https://doi.org/10.15690/vramn1395
- ID: 125714
Цитировать
Полный текст
Аннотация
В данной статье обобщены многочисленные исследования о взаимосвязи таких биологических процессов как воспаление и тромбообразование. Продемонстрирована огромная роль нейтрофиллов и выделяемых ими внеклеточных ловушек нейтрофилов (Neutrophil Extracellular Traps, NETs). Открытие NETs расширило горизонты в понимании биологии нейтрофилов и роли этих клеток в организме. Использование хроматина в сочетании с внутриклеточными белками в качестве противомикробного средства имеет древнюю историю и меняет наше представление о хроматине только как о носителе генетической информации. Благодаря NETs, нейтрофилы могут способствовать развитию патологического венозного и артериального тромбоза или «иммунотромбоза», а также атеросклероза. Высвобождение NETs является, как было показано, одной из причин тромбообразования при таких состояниях как сепсис и рак. Наличие NETs при этих заболеваниях и состояниях дает возможность использовать их или отдельные компоненты в качестве потенциальных биомаркеров. NETs и их компоненты могут быть привлекательны в качестве терапевтических мишеней. Дальнейшие исследования нейтрофилов и NETs необходимы для разработки новых подходов к диагностике и лечению воспалительных и тромботических состояний. Возможно, давно забытые препараты найдут новую сферу для эффективного применения.
Полный текст
Открыть статью на сайте журналаОб авторах
Виктория Омаровна Бицадзе
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Email: vikabits@mail.ru
ORCID iD: 0000-0001-8404-1042
SPIN-код: 5930-0859
д.м.н., профессор
Россия, 119992, Москва, ул. Трубецкая, д. 8, стр. 2Екатерина Викторовна Слуханчук
Российский научный центр хирургии им. акад. Б.В. Петровского
Email: beloborodova@rambler.ru
ORCID iD: 0000-0001-7441-2778
SPIN-код: 7423-8944
к.м.н., доцент
Россия, 119991, г. Москва, Абрикосовский переулок, 2Джамиля Хизриевна Хизроева
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Email: jamatotu@gmail.com
ORCID iD: 0000-0002-0725-9686
SPIN-код: 8225-4976
Scopus Author ID: 57194547147
ResearcherId: F-8384-2017
д.м.н., профессор
Россия, 119992, Москва, ул. Трубецкая, д. 8, стр. 2Мария Владимировна Третьякова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет); ООО «Лечебный Центр»
Email: tretyakova777@yandex.ru
ORCID iD: 0000-0002-3628-0804
SPIN-код: 1463-0065
к.м.н, доцент
Россия, 119992, Москва, ул. Трубецкая, д. 8, стр. 2; 119021, Москва, ул.Тимура Фрунзе, 15/1Андрей Сергеевич Шкода
Городская клиническая больница № 67 им. Л.А. Ворохобова
Email: 67gkb@mail.ru
ORCID iD: 0000-0002-9783-1796
д.м.н., профессор
Россия, 123423, Москва, ул. Саляма Адиля, 2/44Людмила Сергеевна Радецкая
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Email: udaeva@gmail.com
ORCID iD: 0000-0003-3410-6885
SPIN-код: 4554-7324
к.м.н., доцент
Россия, 119992, Москва, ул. Трубецкая, д. 8, стр. 2Александр Давидович Макацария
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Автор, ответственный за переписку.
Email: gemostasis@mail.ru
ORCID iD: 0000-0001-7415-4633
SPIN-код: 7538-2966
https://internist.ru/lectors/detail/makatsariya-/
д.м.н., академик РАН
Россия, 119992, Москва, ул. Трубецкая, д. 8, стр. 2Исмаил Элалами
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет); Медицинский Университет Сорбонна, Университетский Госпиталь Тенон
Email: ismail.elalamy@aphp.fr
ORCID iD: 0000-0002-9576-1368
Scopus Author ID: 7003652413
д.м.н., профессор
Россия, 119991, Москва, ул. Трубецкая 8-2; Франция, 75970, Париж, Китайская ул.20Жан-Кристоф Грис
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет); Университет Монпелье, Франция
Email: jean.christophe.gris@chu-nimes.fr
ORCID iD: 0000-0002-9899-9910
Scopus Author ID: 7005114260
д.м.н., профессор
Россия, 119991, Москва, ул.Трубецкая 8-2; Франция, 30029, Ним, Роберта Дебре ул.09;Эльвира Грандоне
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет);Научно-исследовательская больница «Casa Sollievo della Sofferenza»
Email: grandoneelvira@gmail.com
ORCID iD: 0000-0002-8980-9783
Scopus Author ID: 7006391091
д.м.н., профессор, отделение тромбоза и гемостаза
Италия, Россия, 119991, Москва, ул. Трубецкая 8-2; Италия, 71043, Фоджа, Сан-Джованни-Ротондо, ул. Падре ПиоСписок литературы
- Burzynski LC, Humphry M, Pyrillou K, et al. The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin. Immunity. 2019;50:1033–1042. doi: https://doi.org/10.1016/j.immuni.2019.03.003
- Bonaventura A, Montecucco F, Dallegri F, et al. Novel findings in neutrophil biology and their impact on cardiovascular disease. Cardiovasc Res. 2019;115:1266–1285. doi: https://doi.org/10.1093/cvr/cvz084
- Bonaventura A, Vecchié A, Abbate A, Montecucco F. Neutrophil extracellular traps and cardiovascular diseases: an update. Cells. 2020;9:231. doi: https://doi.org/10.3390/cells9010231
- Mitsios A, Arampatzioglou A, Arelaki S, et al. NETopathies? Unraveling the dark side of old diseases through neutrophils. Front Immunol. 2017;7:678. doi: https://doi.org/10.3389/fimmu.2016.00678
- Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23:279. doi: https://doi.org/10.1038/nm.4294
- Jiménez-Alcázar M, Rangaswamy C, Panda R, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358:1202–1206. doi: https://doi.org/10.1126/science.aam8897
- Brinkmann V. Neutrophil extracellular traps in the second decade. J Innate Immun. 2018;10(5-6):414–421. doi: https://doi.org/10.1159/000489829
- Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6676. doi: https://doi.org/10.1126/sciimmunol.aar6676
- Chrysanthopoulou A, Kambas K, Stakos D, et al. Interferon lambda1/IL‐29 and inorganic polyphosphate are novel regulators of neutrophil‐driven thromboinflammation. J Pathol. 2017;243(1):111–122. doi: https://doi.org/10.1002/path.4935
- von Köckritz-Blickwede M, Goldmann O, Thulin P, et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood. 2008;111:3070–3080. doi: https://doi.org/10.1182/blood-2007-07-104018
- Pertiwi KR, de Boer OJ, Mackaaij C, et al. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time‐dependent manner during atherothrombosis. J Pathol. 2019;247(4):505–512. doi: https://doi.org/10.1002/path.5212
- Marx C, Novotny J, Salbeck D, Zellner KR, Nicolai L, Pekayvaz K, et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood. 2019;134:1859–1872. doi: https://doi.org/10.1182/blood.2019000518
- Grilz E, Mauracher LM, Posch F, et al. Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer. Br J Haematol. 2019;186:311–320. doi: https://doi.org/10.1111/bjh.15906
- Sollberger G, Tilley DO, Zychlinsky A. Neutrophil extracellular traps: the biology of chromatin externalization. Dev Cell. 2018;44:542–553. doi: https://doi.org/10.1016/j.devcel.2018.01.019
- Noubouossie DF, Whelihan MF, Yu Y-B, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129:1021–1029. doi: https://doi.org/10.1182/blood-2016-06-722298
- Ivanov I, Shakhawat R, Sun M-F, et al. Nucleic acids as cofactors for factor XI and prekallikrein activation: Different roles for high-molecular-weight kininogen. Thromb Haemost. 2017;117(4):671–681. doi: https://doi.org/10.1160/TH16-09-0691
- Kordbacheh F, O’Meara CH, Coupland LA, et al. Extracellular histones induce erythrocyte fragility and anemia. Blood. 2017;130:2884–2888. doi: https://doi.org/10.1182/blood-2017-06-790519
- Okeke EB, Louttit C, Fry C, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials. 2020;238:119836. doi: https://doi.org/10.1016/j.biomaterials.2020.119836
- Silvestre-Roig C, Braster Q, Wichapong K, et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature. 2019;569:236–240. doi: https://doi.org/10.1038/s41586-019-1167-6
- Wang Y, Luo L, Braun OÖ, et al. Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice. Sci Rep. 2018;8:1–14. doi: https://doi.org/10.1038/s41598-018-22156-5
- Josefs T, Barrett TJ, Brown EJ, et al. Neutrophil extracellular traps promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice. JCI Insight. 2020;5. doi: https://doi.org/10.1172/jci.insight.134796
- Ashar HK, Mueller NC, Rudd JM, et al. The Role of Extracellular Histones in Influenza Virus Pathogenesis. Am J Pathol. 2018;188:135–148. doi: https://doi.org/10.1016/j.ajpath.2017.09.014
- Ducroux C, Di Meglio L, Loyau S, et al. Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke. 2018;49:754–757. doi: https://doi.org/10.1161/STROKEAHA.117.019896
- Vallés J, Lago A, Santos MT, et al. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thromb Haemost. 2017;117:1919–1929. doi: https://doi.org/10.1160/TH17-02-0130
- Wolach O, Sellar RS, Martinod K, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Science Translational Medicine. 2018;10:eaan8292. doi: https://doi.org/10.1126/scitranslmed.aan8292
- Schedel F, Mayer‐Hain S, Pappelbaum KI, et al. Evidence and impact of neutrophil extracellular traps in malignant melanoma. Pigment Cell Melanoma Res. 2020;33(1):63–73. doi: https://doi.org/10.1111/pcmr.12818
- Teijeira Á, Garasa S, Gato M, et al. Cxcr1 and cxcr2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52(5):856–871.e8. doi: https://doi.org/10.1016/j.immuni.2020.03.001
- Yang L-Y, Luo Q, Lu L, et al. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol. 2020;13:1–15. doi: https://doi.org/10.1186/s13045-019-0836-0
- White C, Noble SI, Watson M, et al. Prevalence, symptom burden, and natural history of deep vein thrombosis in people with advanced cancer in specialist palliative care units (HIDDen): a prospective longitudinal observational study. Lancet Haematol. 2019;6:e79–e88. doi: https://doi.org/10.1016/S2352--3026(18)30215-1
- Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Nat Acad Sci. 2012;109(32):13076–13081. doi: https://doi.org/10.1073/pnas.1200419109
- Yang S, Qi H, Kan K, et al. Neutrophil extracellular traps promote hypercoagulability in patients with sepsis. Shock. 2017;47(2):132–139. doi: https://doi.org/10.1097/SHK.0000000000000741
- Delabranche X, Stiel L, Severac F, et al. Evidence of netosis in septic shock-induced disseminated intravascular coagulation. Shock. 2017;47(3):313–317. doi: https://doi.org/10.1097/SHK.0000000000000719
- Kapoor S, Opneja A, Nayak L. The role of neutrophils in thrombosis. Thromb Res. 2018;170:87–96. doi: https://doi.org/10.1016/j.thromres.2018.08.005
- Duvvuri B, Pachman LM, Morgan G, et al. Neutrophil Extracellular Traps in Tissue and Periphery in Juvenile Dermatomyositis. Arthritis Rheumatol. 2020;72(2):348–358. doi: https://doi.org/10.1002/art.41078
- Goel RR, Kaplan MJ. Deadliest catch: neutrophil extracellular traps in autoimmunity. Curr Op Rheumatol. 2020;32:64–70. doi: https://doi.org/10.1097/BOR.0000000000000667
- Angelidou I, Chrysanthopoulou A, Mitsios A, et al. REDD1/autophagy pathway is associated with neutrophil-driven IL-1β inflammatory response in active ulcerative colitis. J Immunol. 2018;200:3950–3961. doi: https://doi.org/10.4049/jimmunol.1701643
- Frangou E, Chrysanthopoulou A, Mitsios A, et al. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann Rheum Dis. 2019;78:238–248. doi: https://doi.org/10.1136/annrheumdis-2018-213181
- Meng H, Yalavarthi S, Kanthi Y, et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody–mediated venous thrombosis. Arthritis Rheumatol. 2017;69(3):655–667. doi: https://doi.org/10.1002/art.39938
- Gollomp K, Kim M, Johnston I, et al. Neutrophil accumulation and NET release contribute to thrombosis in HIT. JCI Insight. 2018;3(18):e99445. doi: https://doi.org/10.1172/jci.insight.99445
- Perdomo J, Leung HH, Ahmadi Z, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1–14. doi: https://doi.org/10.1038/s41467-019-09160-7
- Maugeri N, Capobianco A, Rovere-Querini P, et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci Transl Med. 2018;10:eaao3089. doi: https://doi.org/10.1126/scitranslmed.aao3089
- Qi H, Yang S, Zhang L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Front Immunol. 2017;8:928. doi: https://doi.org/10.3389/fimmu.2017.00928
- Wiseman SJ, Ralston SH, Wardlaw JM. Cerebrovascular disease in rheumatic diseases: a systematic review and meta-analysis. Stroke. 2016;47:943–950. doi: https://doi.org/10.1161/STROKEAHA.115.012052
- Agca R, Heslinga S, Rollefstad S, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017;76(1):17–28. doi: http://dx.doi.org/10.1136/annrheumdis-2016-209775
- Ali RA, Gandhi AA, Meng H, et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nature Commun. 2019;10:1–12. doi: https://doi.org/10.1038/s41467-019-09801-x
- Knight JS, Meng H, Coit P, et al. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. JCI Insight. 2017;2(18):e93897. doi: https://doi.org/10.1172/jci.insight.93897
- Weeding E, Coit P, Yalavarthi S, et al. Genome-wide DNA methylation analysis in primary antiphospholipid syndrome neutrophils. Clin Immunol. 2018;196:110–116. doi: https://doi.org/10.1016/j.clim.2018.11.011
- Sharma A, McCann K, Tripathi JK, et al. Tamoxifen restores extracellular trap formation in neutrophils from patients with chronic granulomatous disease in a reactive oxygen species–independent manner. J Allergy Clin Immunol. 2019;144(2):597–600.e593. doi: https://doi.org/10.1016/j.jaci.2019.04.014
- Papagoras C, Chrysanthopoulou A, Mitsios A, et al. Autophagy inhibition in adult-onset Still’s disease: still more space for hydroxychloroquine? Clin Exp Rheumatol. 2017;35 Suppl 108 (6):133–134.
- Belizna C, Pregnolato F, Abad S, et al. HIBISCUS: Hydroxychloroquine for the secondary prevention of thrombotic and obstetrical events in primary antiphospholipid syndrome. Autoimmunity Reviews. 2018;17:1153–1168. doi: https://doi.org/10.1016/j.autrev.2018.05.012
- Manfredi AA, Rovere-Querini P, D’Angelo A, Maugeri N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res. 2017;123:146–156. doi: https://doi.org/10.1016/j.phrs.2016.08.008
- Van Avondt K, Maegdefessel L, Soehnlein O. Therapeutic targeting of neutrophil extracellular traps in atherogenic inflammation. Thromb Haemost. 2019;119(4):542–552. doi: https://doi.org/10.1055/s-0039-1678664
- Mastellos DC, Reis ES, Ricklin D, et al. Complement C3-targeted therapy: replacing long-held assertions with evidence-based discovery. Trends Immunol. 2017;38(6):383–394. doi: https://doi.org/10.1016/j.it.2017.03.003
- Boone BA, Murthy P, Miller-Ocuin J, Doerfler WR, Ellis JT, Liang X, et al. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer. 2018;18:678. doi: https://doi.org/10.1186/s12885-018-4584-2
- Skendros P, Chrysanthopoulou A, Rousset F, al. Regulated in development and DNA damage responses 1 (REDD1) links stress with IL-1β-mediated familial Mediterranean fever attack through autophagy-driven neutrophil extracellular traps. J Allergy Clin Immunol. 2017;140(5):1378–1387.e1313. doi: https://doi.org/10.1016/j.jaci.2017.02.021
- Mauracher LM, Posch F, Martinod K, et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost. 2018;16(3):508–518. doi: https://doi.org/10.1111/jth.13951.
Дополнительные файлы
